summaryrefslogtreecommitdiff
path: root/ext/drampower/src/CmdHandlers.cc
blob: f99917d21ce0d884fde7511bf6eaacd657a4ca50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 * Copyright (c) 2012-2014, TU Delft
 * Copyright (c) 2012-2014, TU Eindhoven
 * Copyright (c) 2012-2014, TU Kaiserslautern
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include "CommandAnalysis.h"

using std::cerr;
using std::endl;
using std::max;

using namespace Data;


int64_t zero_guard(int64_t cycles_in, const char* warning)
{
  // Calculate max(0, cycles_in)
  int64_t zero = 0;
  if (warning != nullptr && cycles_in < 0) {
    // This line is commented out for now, we will attempt to remove the situations where
    // these warnings trigger later.
    // cerr << "WARNING: " << warning << endl;
  }
  return max(zero, cycles_in);
}

void CommandAnalysis::handleAct(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::ACT, timestamp, bank);
  // If command is ACT - update number of acts, bank state of the
  // target bank, first and latest activation cycle and the memory
  // state. Update the number of precharged/idle-precharged cycles.
  // If the bank is already active ignore the command and generate a
  // warning.
  if (isPrecharged(bank)) {
    numberofactsBanks[bank]++;

    if (nActiveBanks() == 0) {
      // Here a memory state transition to ACT is happening. Save the
      // number of cycles in precharge state (increment the counter).
      first_act_cycle = timestamp;
      precycles += zero_guard(timestamp - last_pre_cycle, "1 last_pre_cycle is in the future.");
      idle_pre_update(timestamp, latest_pre_cycle);
    }

    bank_state[bank] = BANK_ACTIVE;
    latest_act_cycle = timestamp;
  } else {
    printWarning("Bank is already active!", MemCommand::ACT, timestamp, bank);
  }
}

void CommandAnalysis::handleRd(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::RD, timestamp, bank);
  // If command is RD - update number of reads and read cycle. Check
  // for active idle cycles (if any).
  if (isPrecharged(bank)) {
    printWarning("Bank is not active!", MemCommand::RD, timestamp, bank);
  }
  numberofreadsBanks[bank]++;
  idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
  latest_read_cycle = timestamp;
}

void CommandAnalysis::handleWr(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::WR, timestamp, bank);
  // If command is WR - update number of writes and write cycle. Check
  // for active idle cycles (if any).
  if (isPrecharged(bank)) {
    printWarning("Bank is not active!", MemCommand::WR, timestamp, bank);
  }
  numberofwritesBanks[bank]++;
  idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
  latest_write_cycle = timestamp;
}

void CommandAnalysis::handleRef(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::REF, timestamp, bank);
  // If command is REF - update number of refreshes, set bank state of
  // all banks to ACT, set the last PRE cycles at RFC-RP cycles from
  // timestamp, set the number of active cycles to RFC-RP and check
  // for active and precharged cycles and idle active and idle
  // precharged cycles before refresh. Change memory state to 0.
  printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", MemCommand::REF, timestamp, bank);
  numberofrefs++;
  idle_pre_update(timestamp, latest_pre_cycle);
  first_act_cycle  = timestamp;
  std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp);
  precycles       += zero_guard(timestamp - last_pre_cycle, "2 last_pre_cycle is in the future.");
  last_pre_cycle   = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
  latest_pre_cycle = last_pre_cycle;
  actcycles       += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
  for (auto &e : actcyclesBanks) {
    e += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
  }
  for (auto& bs : bank_state) {
    bs = BANK_PRECHARGED;
  }
}

void CommandAnalysis::handleRefB(unsigned bank, int64_t timestamp)
{
  // A REFB command requires a previous PRE command.
  if (isPrecharged(bank)) {
    // This previous PRE command handler is also responsible for keeping the
    // memory state updated.
    // Here we consider that the memory state is not changed in order to keep
    // things simple, since the transition from PRE to ACT state takes time.
    numberofrefbBanks[bank]++;
    // Length of the refresh: here we have an approximation, we consider tRP
    // also as act cycles because the bank will be precharged (stable) after
    // tRP.
    actcyclesBanks[bank] += memSpec.memTimingSpec.RAS + memSpec.memTimingSpec.RP;
  } else {
    printWarning("Bank must be precharged for REFB!", MemCommand::REFB, timestamp, bank);
  }
}

void CommandAnalysis::handlePre(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PRE, timestamp, bank);
  // If command is explicit PRE - update number of precharges, bank
  // state of the target bank and last and latest precharge cycle.
  // Calculate the number of active cycles if the memory was in the
  // active state before, but there is a state transition to PRE now
  // (i.e., this is the last active bank).
  // If the bank is already precharged ignore the command and generate a
  // warning.

  // Precharge only if the target bank is active
  if (bank_state[bank] == BANK_ACTIVE) {
    numberofpresBanks[bank]++;
    actcyclesBanks[bank] += zero_guard(timestamp - first_act_cycle_banks[bank], "first_act_cycle is in the future (bank).");
    // Since we got here, at least one bank is active
    assert(nActiveBanks() != 0);

    if (nActiveBanks() == 1) {
      // This is the last active bank. Therefore, here a memory state
      // transition to PRE is happening. Let's increment the active cycle
      // counter.
      actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
      last_pre_cycle = timestamp;
      idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
    }

    bank_state[bank] = BANK_PRECHARGED;
    latest_pre_cycle = timestamp;
  } else {
    printWarning("Bank is already precharged!", MemCommand::PRE, timestamp, bank);
  }
}

void CommandAnalysis::handlePreA(unsigned bank, int64_t timestamp)
{
  printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PREA, timestamp, bank);
  // If command is explicit PREA (precharge all banks) - update
  // number of precharges by the number of active banks, update the bank
  // state of all banks to PRE and set the precharge cycle (the cycle in
  // which the memory state changes from ACT to PRE, aka last_pre_cycle).
  // Calculate the number of active cycles if the memory was in the
  // active state before, but there is a state transition to PRE now.

  if (nActiveBanks() > 0) {
    // Active banks are being precharged
    // At least one bank was active, therefore the current memory state is
    // ACT. Since all banks are being precharged a memory state transition
    // to PRE is happening. Add to the counter the amount of cycles the
    // memory remained in the ACT state.

    actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
    last_pre_cycle = timestamp;

    for (unsigned b = 0; b < num_banks; b++) {
      if (bank_state[b] == BANK_ACTIVE) {
        // Active banks are being precharged
        numberofpresBanks[b] += 1;
        actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
      }
    }

    idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);

    latest_pre_cycle = timestamp;
    // Reset the state for all banks to precharged.
    for (auto& bs : bank_state) {
      bs = BANK_PRECHARGED;
    }
  } else {
    printWarning("All banks are already precharged!", MemCommand::PREA, timestamp, bank);
  }
}

void CommandAnalysis::handlePdnFAct(unsigned bank, int64_t timestamp)
{
  // If command is fast-exit active power-down - update number of
  // power-downs, set the power-down cycle and the memory mode to
  // fast-exit active power-down. Save states of all the banks from
  // the cycle before entering active power-down, to be returned to
  // after powering-up. Update active and active idle cycles.
  printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_F_ACT, timestamp, bank);
  f_act_pdns++;
  last_bank_state = bank_state;
  pdn_cycle  = timestamp;
  actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
  for (unsigned b = 0; b < num_banks; b++) {
    if (bank_state[b] == BANK_ACTIVE) {
      actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
    }
  }
  idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
  mem_state  = CommandAnalysis::MS_PDN_F_ACT;
}

void CommandAnalysis::handlePdnSAct(unsigned bank, int64_t timestamp)
{
  // If command is slow-exit active power-down - update number of
  // power-downs, set the power-down cycle and the memory mode to
  // slow-exit active power-down. Save states of all the banks from
  // the cycle before entering active power-down, to be returned to
  // after powering-up. Update active and active idle cycles.
  printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_S_ACT, timestamp, bank);
  s_act_pdns++;
  last_bank_state = bank_state;
  pdn_cycle  = timestamp;
  actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
  for (unsigned b = 0; b < num_banks; b++) {
    if (bank_state[b] == BANK_ACTIVE) {
      actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
    }
  }
  idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
  mem_state  = CommandAnalysis::MS_PDN_S_ACT;
}

void CommandAnalysis::handlePdnFPre(unsigned bank, int64_t timestamp)
{
  // If command is fast-exit precharged power-down - update number of
  // power-downs, set the power-down cycle and the memory mode to
  // fast-exit precahrged power-down. Update precharged and precharged
  // idle cycles.
  printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_F_PRE, timestamp, bank);
  f_pre_pdns++;
  pdn_cycle  = timestamp;
  precycles += zero_guard(timestamp - last_pre_cycle, "3 last_pre_cycle is in the future.");
  idle_pre_update(timestamp, latest_pre_cycle);
  mem_state  = CommandAnalysis::MS_PDN_F_PRE;
}

void CommandAnalysis::handlePdnSPre(unsigned bank, int64_t timestamp)
{
  // If command is slow-exit precharged power-down - update number of
  // power-downs, set the power-down cycle and the memory mode to
  // slow-exit precahrged power-down. Update precharged and precharged
  // idle cycles.
  printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.",  MemCommand::PDN_S_PRE, timestamp, bank);
  s_pre_pdns++;
  pdn_cycle  = timestamp;
  precycles += zero_guard(timestamp - last_pre_cycle, "4 last_pre_cycle is in the future.");
  idle_pre_update(timestamp, latest_pre_cycle);
  mem_state  = CommandAnalysis::MS_PDN_S_PRE;
}

void CommandAnalysis::handlePupAct(int64_t timestamp)
{
  // If command is power-up in the active mode - check the power-down
  // exit-mode employed (fast or slow), update the number of power-down
  // and power-up cycles and the latest and first act cycle. Also, reset
  // all the individual bank states to the respective saved states
  // before entering power-down.
  const MemTimingSpec& t = memSpec.memTimingSpec;

  if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
    f_act_pdcycles  += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
    pup_act_cycles  += t.XP;
    latest_act_cycle = timestamp;
  } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
    s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
    if (memSpec.memArchSpec.dll == false) {
      pup_act_cycles  += t.XP;
      latest_act_cycle = timestamp;
    } else {
      pup_act_cycles  += t.XPDLL - t.RCD;
      latest_act_cycle = timestamp + zero_guard(t.XPDLL - (2 * t.RCD), "t.XPDLL - (2 * t.RCD) < 0");
    }
  } else {
    cerr << "Incorrect use of Active Power-Up!" << endl;
  }
  mem_state = MS_NOT_IN_PD;
  bank_state = last_bank_state;
  first_act_cycle = timestamp;
  std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp);
}

void CommandAnalysis::handlePupPre(int64_t timestamp)
{
  // If command is power-up in the precharged mode - check the power-down
  // exit-mode employed (fast or slow), update the number of power-down
  // and power-up cycles and the latest and last pre cycle.
  const MemTimingSpec& t = memSpec.memTimingSpec;
  if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
    f_pre_pdcycles  += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
    pup_pre_cycles  += t.XP;
    latest_pre_cycle = timestamp;
  } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
    s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
    if (memSpec.memArchSpec.dll == false) {
      pup_pre_cycles  += t.XP;
      latest_pre_cycle = timestamp;
    } else {
      pup_pre_cycles  += t.XPDLL - t.RCD;
      latest_pre_cycle = timestamp + zero_guard(t.XPDLL - t.RCD - t.RP, "t.XPDLL - t.RCD - t.RP");
    }
  } else {
    cerr << "Incorrect use of Precharged Power-Up!" << endl;
  }
  mem_state      = MS_NOT_IN_PD;
  last_pre_cycle = timestamp;
}

void CommandAnalysis::handleSREn(unsigned bank, int64_t timestamp)
{
  // If command is self-refresh - update number of self-refreshes,
  // set memory state to SREF, update precharge and idle precharge
  // cycles and set the self-refresh cycle.
  printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", MemCommand::SREN, timestamp, bank);
  numberofsrefs++;
  sref_cycle = timestamp;
  sref_cycle_window = timestamp;
  sref_ref_pre_cycles_window = 0;
  sref_ref_act_cycles_window = 0;
  precycles += zero_guard(timestamp - last_pre_cycle, "5  last_pre_cycle is in the future.");
  idle_pre_update(timestamp, latest_pre_cycle);
  mem_state  = CommandAnalysis::MS_SREF;
}

void CommandAnalysis::handleSREx(unsigned bank, int64_t timestamp)
{
  // If command is self-refresh exit - update the number of self-refresh
  // clock cycles, number of active and precharged auto-refresh clock
  // cycles during self-refresh and self-refresh exit based on the number
  // of cycles in the self-refresh mode and auto-refresh duration (RFC).
  // Set the last and latest precharge cycle accordingly and set the
  // memory state to 0.
  const MemTimingSpec& t = memSpec.memTimingSpec;
  if (mem_state != CommandAnalysis::MS_SREF) {
    cerr << "Incorrect use of Self-Refresh Power-Up!" << endl;
  }
  // The total duration of self-refresh is given by the difference between
  // the current clock cycle and the clock cycle of entering self-refresh.
  int64_t sref_duration = timestamp - sref_cycle;

  // Negative or zero duration should never happen.
  if (sref_duration <= 0) {
    printWarning("Invalid Self-Refresh duration!", MemCommand::SREX, timestamp, bank);
    sref_duration = 0;
  }

  // The minimum time that the DRAM must remain in Self-Refresh is CKESR.
  if (sref_duration < t.CKESR) {
    printWarning("Self-Refresh duration < CKESR!", MemCommand::SREX, timestamp, bank);
  }

  if (sref_duration >= t.RFC) {
    /*
     * Self-refresh Exit Context 1 (tSREF >= tRFC):
     * The memory remained in self-refresh for a certain number of clock
     * cycles greater than a refresh cycle time (RFC). Consequently, the
     * initial auto-refresh accomplished.
     *
     *
     *  SREN                                #              SREX
     *  |                                   #                ^
     *  |                                   #                |
     *  |<------------------------- tSREF ----------...----->|
     *  |                                   #                |
     *  |      Initial Auto-Refresh         #                |
     *  v                                   #                |
     *  ------------------------------------#-------...-----------------> t
     *                                      #
     *   <------------- tRFC -------------->#
     *   <---- (tRFC - tRP) ----><-- tRP -->#
     *               |                |
     *               v                v
     *     sref_ref_act_cycles     sref_ref_pre_cycles
     *
     *
     * Summary:
     * sref_cycles += tSREF – tRFC
     * sref_ref_act_cycles += tRFC - tRP
     * sref_ref_pre_cycles += tRP
     * spup_ref_act_cycles += 0
     * spup_ref_pre_cycles += 0
     *
     */

    // The initial auto-refresh consumes (IDD5 − IDD3N) over one refresh
    // period (RFC) from the start of the self-refresh.
    sref_ref_act_cycles += t.RFC -
                           t.RP - sref_ref_act_cycles_window;
    sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window;
    last_pre_cycle       = timestamp;

    // The IDD6 current is consumed for the time period spent in the
    // self-refresh mode, which excludes the time spent in finishing the
    // initial auto-refresh.
    if (sref_cycle_window > sref_cycle + t.RFC) {
        sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future.");
    } else {
        sref_cycles += zero_guard(timestamp - sref_cycle - t.RFC, "sref_cycle - t.RFC < 0");
    }

    // IDD2N current is consumed when exiting the self-refresh state.
    if (memSpec.memArchSpec.dll == false) {
      spup_cycles     += t.XS;
      latest_pre_cycle = timestamp + zero_guard(t.XS - t.RP, "t.XS - t.RP < 0");
    } else {
      spup_cycles     += t.XSDLL - t.RCD;
      latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD  - t.RP, "t.XSDLL - t.RCD  - t.RP < 0");
    }

  } else {
    // Self-refresh Exit Context 2 (tSREF < tRFC):
    // Exit self-refresh before the completion of the initial
    // auto-refresh.

    // Number of active cycles needed by an auto-refresh.
    int64_t ref_act_cycles = t.RFC - t.RP;

    if (sref_duration >= ref_act_cycles) {
      /*
       * Self-refresh Exit Context 2A (tSREF < tRFC && tSREF >= tRFC - tRP):
       * The duration of self-refresh is equal or greater than the number
       * of active cycles needed by the initial auto-refresh.
       *
       *
       *  SREN                                           SREX
       *  |                                                ^         #
       *  |                                                |         #
       *  |<------------------ tSREF --------------------->|         #
       *  |                                                |         #
       *  |                                  Initial Auto-Refresh    #
       *  v                                                |         #
       *  -----------------------------------------------------------#--> t
       *                                                             #
       *   <------------------------ tRFC -------------------------->#
       *   <------------- (tRFC - tRP)--------------><----- tRP ---->#
       *           |                                 <-----><------->
       *           v                                  |         |
       *     sref_ref_act_cycles                      v         v
       *                             sref_ref_pre_cycles spup_ref_pre_cycles
       *
       *
       * Summary:
       * sref_cycles += 0
       * sref_ref_act_cycles += tRFC - tRP
       * sref_ref_pre_cycles += tSREF – (tRFC – tRP)
       * spup_ref_act_cycles += 0
       * spup_ref_pre_cycles += tRP – sref_ref_pre_cycles
       *
       */

      // Number of precharged cycles (zero <= pre_cycles < RP)
      int64_t pre_cycles = sref_duration - ref_act_cycles - sref_ref_pre_cycles_window;

      sref_ref_act_cycles += ref_act_cycles - sref_ref_act_cycles_window;
      sref_ref_pre_cycles += pre_cycles;

      // Number of precharged cycles during the self-refresh power-up. It
      // is at maximum tRP (if pre_cycles is zero).
      int64_t spup_pre = t.RP - pre_cycles;

      spup_ref_pre_cycles += spup_pre;

      last_pre_cycle       = timestamp + spup_pre;

      if (memSpec.memArchSpec.dll == false) {
        spup_cycles     += t.XS - spup_pre;
        latest_pre_cycle = timestamp + zero_guard(t.XS - spup_pre - t.RP, "t.XS - spup_pre - t.RP < 0");
      } else {
        spup_cycles     += t.XSDLL - t.RCD - spup_pre;
        latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_pre - t.RP, "t.XSDLL - t.RCD - spup_pre - t.RP");
      }
    } else {
      /*
       * Self-refresh Exit Context 2B (tSREF < tRFC - tRP):
       * self-refresh duration is shorter than the number of active cycles
       * needed by the initial auto-refresh.
       *
       *
       *  SREN                             SREX
       *  |                                  ^                        #
       *  |                                  |                        #
       *  |<-------------- tSREF ----------->|                        #
       *  |                                  |                        #
       *  |                       Initial Auto-Refresh                #
       *  v                                  |                        #
       *  ------------------------------------------------------------#--> t
       *                                                              #
       *   <------------------------ tRFC --------------------------->#
       *   <-------------- (tRFC - tRP)-------------><------ tRP ---->#
       *   <--------------------------------><------><--------------->
       *               |                        |             |
       *               v                        v             v
       *     sref_ref_act_cycles    spup_ref_act_cycles spup_ref_pre_cycles
       *
       *
       * Summary:
       * sref_cycles += 0
       * sref_ref_act_cycles += tSREF
       * sref_ref_pre_cycles += 0
       * spup_ref_act_cycles += (tRFC – tRP) - tSREF
       * spup_ref_pre_cycles += tRP
       *
       */

      sref_ref_act_cycles += sref_duration - sref_ref_act_cycles_window;

      int64_t spup_act = (t.RFC - t.RP) - sref_duration;

      spup_ref_act_cycles += spup_act;
      spup_ref_pre_cycles += t.RP;

      last_pre_cycle       = timestamp + spup_act + t.RP;
      if (memSpec.memArchSpec.dll == false) {
        spup_cycles     += t.XS - spup_act - t.RP;
        latest_pre_cycle = timestamp + zero_guard(t.XS - spup_act - (2 * t.RP), "t.XS - spup_act - (2 * t.RP) < 0");
      } else {
        spup_cycles     += t.XSDLL - t.RCD - spup_act - t.RP;
        latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_act - (2 * t.RP), "t.XSDLL - t.RCD - spup_act - (2 * t.RP) < 0");
      }
    }
  }
  mem_state = MS_NOT_IN_PD;
}


void CommandAnalysis::handleNopEnd(int64_t timestamp)
{
  // May be optionally used at the end of memory trace for better accuracy
  // Update all counters based on completion of operations.
  const MemTimingSpec& t = memSpec.memTimingSpec;
  for (unsigned b = 0; b < num_banks; b++) {
    if (bank_state[b] == BANK_ACTIVE) {
      actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)");
    }
  }

  if (nActiveBanks() > 0 && mem_state == MS_NOT_IN_PD) {
    actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future");
    idle_act_update(latest_read_cycle, latest_write_cycle,
                    latest_act_cycle, timestamp);
  } else if (nActiveBanks() == 0 && mem_state == MS_NOT_IN_PD) {
    precycles += zero_guard(timestamp - last_pre_cycle, "6 last_pre_cycle is in the future");
    idle_pre_update(timestamp, latest_pre_cycle);
  } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
    f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
  } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
    s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
  } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
    f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
  } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
    s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
  } else if (mem_state == CommandAnalysis::MS_SREF) {
    auto rfc_minus_rp = (t.RFC - t.RP);

    if (timestamp > sref_cycle + t.RFC) {
      if (sref_cycle_window <= sref_cycle + rfc_minus_rp) {
        sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window;
        sref_ref_act_cycles_window = rfc_minus_rp;
        sref_cycle_window = sref_cycle + rfc_minus_rp;
      }
      if (sref_cycle_window <= sref_cycle + t.RFC) {
        sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window;
        sref_ref_pre_cycles_window = t.RP;
        sref_cycle_window = sref_cycle + t.RFC;
      }
      sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future");
    } else if (timestamp > sref_cycle + rfc_minus_rp) {

      if (sref_cycle_window <= sref_cycle + rfc_minus_rp) {
        sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window;
        sref_ref_act_cycles_window = rfc_minus_rp;
        sref_cycle_window = sref_cycle + rfc_minus_rp;
      }
      sref_ref_pre_cycles_window += timestamp - sref_cycle_window;
      sref_ref_pre_cycles += timestamp - sref_cycle_window;
    } else {
      sref_ref_act_cycles_window += timestamp - sref_cycle_window;
      sref_ref_act_cycles += timestamp - sref_cycle_window;
    }
  }
}