summaryrefslogtreecommitdiff
path: root/ext/drampower/src/CommandAnalysis.cc
blob: 4dea5c101c298d04b77179f883fe933c3aba4e83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 * Copyright (c) 2012-2014, TU Delft
 * Copyright (c) 2012-2014, TU Eindhoven
 * Copyright (c) 2012-2014, TU Kaiserslautern
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji, Sven Goossens
 *
 */

#include <fstream>
#include <algorithm>
#include <sstream>

#include "CommandAnalysis.h"
#include "CmdScheduler.h"

using namespace Data;
using namespace std;

CommandAnalysis::CommandAnalysis()
{
}

CommandAnalysis::CommandAnalysis(const int nbrofBanks)
{
  // Initializing all counters and variables

  numberofacts        = 0;
  numberofpres        = 0;
  numberofreads       = 0;
  numberofwrites      = 0;
  numberofrefs        = 0;
  f_act_pdns          = 0;
  s_act_pdns          = 0;
  f_pre_pdns          = 0;
  s_pre_pdns          = 0;
  numberofsrefs       = 0;

  pop                 = 0;
  init                = 0;
  zero                = 0;

  actcycles           = 0;
  precycles           = 0;
  f_act_pdcycles      = 0;
  s_act_pdcycles      = 0;
  f_pre_pdcycles      = 0;
  s_pre_pdcycles      = 0;
  pup_act_cycles      = 0;
  pup_pre_cycles      = 0;
  sref_cycles         = 0;
  spup_cycles         = 0;
  sref_ref_act_cycles = 0;
  sref_ref_pre_cycles = 0;
  spup_ref_act_cycles = 0;
  spup_ref_pre_cycles = 0;
  idlecycles_act      = 0;
  idlecycles_pre      = 0;

  latest_act_cycle    = -1;
  latest_pre_cycle    = -1;
  latest_read_cycle   = -1;
  latest_write_cycle  = -1;
  end_read_op         = 0;
  end_write_op        = 0;
  end_act_op          = 0;

  first_act_cycle     = 0;
  last_pre_cycle      = 0;

  bankstate.resize(nbrofBanks, 0);
  last_states.resize(nbrofBanks);
  mem_state  = 0;

  sref_cycle = 0;
  pdn_cycle  = 0;

  cmd_list.clear();
  full_cmd_list.resize(1, MemCommand::PRE);
  cached_cmd.clear();
  activation_cycle.resize(nbrofBanks, 0);
}

// function to clear all arrays
void CommandAnalysis::clear()
{
  cached_cmd.clear();
  cmd_list.clear();
  full_cmd_list.clear();
  last_states.clear();
  bankstate.clear();
}

// Reads through the trace file, identifies the timestamp, command and bank
// If the issued command includes an auto-precharge, adds an explicit
// precharge to a cached command list and computes the precharge offset from the
// issued command timestamp, when the auto-precharge would kick in

void CommandAnalysis::getCommands(const Data::MemorySpecification& memSpec,
                                  const int nbrofBanks, std::vector<MemCommand>& list, bool lastupdate)
{
  for (vector<MemCommand>::const_iterator i = list.begin(); i != list.end(); ++i) {
    const MemCommand& cmd = *i;
    cmd_list.push_back(cmd);

    MemCommand::cmds cmdType = cmd.getType();
    if (cmdType == MemCommand::ACT) {
      activation_cycle[cmd.getBank()] = cmd.getTimeInt64();
    } else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) {
      // Remove auto-precharge flag from command
      cmd_list.back().setType(cmd.typeWithoutAutoPrechargeFlag());

      // Add the auto precharge to the list of cached_cmds
      int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType),
                           activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS);
      cached_cmd.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), static_cast<double>(preTime)));
    }
  }
  pop = 0;
  // Note: the extra pre-cmds at the end of the lists, and the cast to double
  // of the size vector is probably not desirable.
  cmd_list.push_back(MemCommand::PRE);
  cached_cmd.push_back(MemCommand::PRE);
  analyse_commands(nbrofBanks, memSpec, cmd_list.size()-1,
                                        cached_cmd.size()-1, lastupdate);
  cmd_list.clear();
  cached_cmd.clear();
} // CommandAnalysis::getCommands

// Checks the auto-precharge cached command list and inserts the explicit
// precharges with the appropriate timestamp in the original command list
// (by merging) based on their offset from the issuing command. Calls the
// evaluate function to analyse this expanded list of commands.

void CommandAnalysis::analyse_commands(const int nbrofBanks,
                                       Data::MemorySpecification memSpec, int64_t nCommands, int64_t nCached, bool lastupdate)
{
  full_cmd_list.resize(1, MemCommand::PRE);
  unsigned mCommands = 0;
  unsigned mCached   = 0;
  for (unsigned i = 0; i < nCommands + nCached + 1; i++) {
    if (cached_cmd.size() > 1) {
      if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) {
        full_cmd_list[i].setType(MemCommand::PREA);
        init = 1;
        pop  = 1;
      } else {
        init = 1;
        if ((cached_cmd[mCached].getTime() > 0) && (cmd_list.
                                                    at(mCommands).getTime() < cached_cmd[mCached].
                                                    getTime()) && ((cmd_list[mCommands].getTime() > 0) ||
                                                                   ((cmd_list[mCommands].getTime() == 0) && (cmd_list[mCommands].
                                                                                                             getType() != MemCommand::PRE)))) {
          full_cmd_list[i] = cmd_list[mCommands];
          mCommands++;
        } else if ((cached_cmd[mCached].getTime() > 0) && (cmd_list[mCommands].
                                                           getTime() >= cached_cmd[mCached].getTime())) {
          full_cmd_list[i] = cached_cmd[mCached];
          mCached++;
        } else if (cached_cmd[mCached].getTime() == 0) {
          if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list[mCommands].
                                                       getTime() == 0) && (cmd_list[mCommands].
                                                                           getType() != MemCommand::PRE))) {
            full_cmd_list[i] = cmd_list[mCommands];
            mCommands++;
          }
        } else if (cmd_list[mCommands].getTime() == 0) {
          full_cmd_list[i] = cached_cmd[mCached];
          mCached++;
        }
      }
    } else {
      if ((cmd_list[mCommands].getTime() > 1) && (init == 0)) {
        full_cmd_list[i].setType(MemCommand::PREA);
        init = 1;
        pop  = 1;
      } else {
        init = 1;
        if ((cmd_list[mCommands].getTime() > 0) || ((cmd_list.
                                                     at(mCommands).getTime() == 0) && (cmd_list[mCommands].
                                                                                       getType() != MemCommand::PRE))) {
          full_cmd_list[i] = cmd_list[mCommands];
          mCommands++;
        }
      }
    }
    full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::PRE);
  }

  full_cmd_list.pop_back();
  if (pop == 0) {
    full_cmd_list.pop_back();
  }
  if (lastupdate) {
    full_cmd_list.resize(full_cmd_list.size() + 1, MemCommand::NOP);
    full_cmd_list[full_cmd_list.size() - 1].setTime(full_cmd_list
                                                    [full_cmd_list.size() - 2].getTime() + timeToCompletion(memSpec,
                                                                                                            full_cmd_list[full_cmd_list.size() - 2].getType()) - 1);
  }

  evaluate(memSpec, full_cmd_list, nbrofBanks);
} // CommandAnalysis::analyse_commands

// To get the time of completion of the issued command
// Derived based on JEDEC specifications

int CommandAnalysis::timeToCompletion(const MemorySpecification&
                                      memSpec, MemCommand::cmds type)
{
  int offset = 0;
  const MemTimingSpec& memTimingSpec     = memSpec.memTimingSpec;
  const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;

  if (type == MemCommand::RD) {
    offset = static_cast<int>(memTimingSpec.RL +
                              memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength /
                                                         memArchSpec.dataRate));
  } else if (type == MemCommand::WR) {
    offset = static_cast<int>(memTimingSpec.WL +
                              (memArchSpec.burstLength / memArchSpec.dataRate) +
                              memTimingSpec.WR);
  } else if (type == MemCommand::ACT) {
    offset = static_cast<int>(memTimingSpec.RCD);
  } else if ((type == MemCommand::PRE) || (type == MemCommand::PREA)) {
    offset = static_cast<int>(memTimingSpec.RP);
  }
  return offset;
} // CommandAnalysis::timeToCompletion

// Used to analyse a given list of commands and identify command timings
// and memory state transitions
void CommandAnalysis::evaluate(const MemorySpecification& memSpec,
                               vector<MemCommand>& cmd_list, int nbrofBanks)
{
  // for each command identify timestamp, type and bank
  for (unsigned cmd_list_counter = 0; cmd_list_counter < cmd_list.size();
       cmd_list_counter++) {
    // For command type
    int type = cmd_list[cmd_list_counter].getType();
    // For command bank
    int bank = cmd_list[cmd_list_counter].getBank();
    // Command Issue timestamp in clock cycles (cc)
    int64_t timestamp = cmd_list[cmd_list_counter].getTimeInt64();

    if (type == MemCommand::ACT) {
      // If command is ACT - update number of acts, bank state of the
      // target bank, first and latest activation cycle and the memory
      // state. Update the number of precharged/idle-precharged cycles.
      numberofacts++;
      if (bankstate[bank] == 1) {
        printWarning("Bank is already active!", type, timestamp, bank);
      }
      bankstate[bank] = 1;
      if (mem_state == 0) {
        first_act_cycle = timestamp;
        precycles      += max(zero, timestamp - last_pre_cycle);
        idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      }
      latest_act_cycle = timestamp;
      mem_state++;
    } else if (type == MemCommand::RD) {
      // If command is RD - update number of reads and read cycle. Check
      // for active idle cycles (if any).
      if (bankstate[bank] == 0) {
        printWarning("Bank is not active!", type, timestamp, bank);
      }
      numberofreads++;
      idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                      latest_act_cycle, timestamp);
      latest_read_cycle = timestamp;
    } else if (type == MemCommand::WR) {
      // If command is WR - update number of writes and write cycle. Check
      // for active idle cycles (if any).
      if (bankstate[bank] == 0) {
        printWarning("Bank is not active!", type, timestamp, bank);
      }
      numberofwrites++;
      idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                      latest_act_cycle, timestamp);
      latest_write_cycle = timestamp;
    } else if (type == MemCommand::REF) {
      // If command is REF - update number of refreshes, set bank state of
      // all banks to ACT, set the last PRE cycles at RFC-RP cycles from
      // timestamp, set the number of active cycles to RFC-RP and check
      // for active and precharged cycles and idle active and idle
      // precharged cycles before refresh. Change memory state to 0.
      printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", type, timestamp, bank);
      numberofrefs++;
      idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      first_act_cycle  = timestamp;
      precycles       += max(zero, timestamp - last_pre_cycle);
      last_pre_cycle   = timestamp + memSpec.memTimingSpec.RFC -
                         memSpec.memTimingSpec.RP;
      latest_pre_cycle = last_pre_cycle;
      actcycles       += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
      mem_state        = 0;
      for (int j = 0; j < nbrofBanks; j++) {
        bankstate[j] = 0;
      }
    } else if (type == MemCommand::PRE) {
      // If command is explicit PRE - update number of precharges, bank
      // state of the target bank and last and latest precharge cycle.
      // Calculate the number of active cycles if the memory was in the
      // active state before, but there is a state transition to PRE now.
      // If not, update the number of precharged cycles and idle cycles.
      // Update memory state if needed.
      if (bankstate[bank] == 1) {
        numberofpres++;
      }
      bankstate[bank] = 0;

      if (mem_state == 1) {
        actcycles     += max(zero, timestamp - first_act_cycle);
        last_pre_cycle = timestamp;
        idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                        latest_act_cycle, timestamp);
      } else if (mem_state == 0) {
        precycles     += max(zero, timestamp - last_pre_cycle);
        idle_pre_update(memSpec, timestamp, latest_pre_cycle);
        last_pre_cycle = timestamp;
      }
      latest_pre_cycle = timestamp;
      if (mem_state > 0) {
        mem_state--;
      } else {
        mem_state = 0;
      }
    } else if (type == MemCommand::PREA) {
      // If command is explicit PREA (precharge all banks) - update
      // number of precharges by the number of banks, update the bank
      // state of all banks to PRE and set the precharge cycle.
      // Calculate the number of active cycles if the memory was in the
      // active state before, but there is a state transition to PRE now.
      // If not, update the number of precharged cycles and idle cycles.
      if (timestamp == 0) {
        numberofpres += 0;
      } else {
        numberofpres += mem_state;
      }

      if (mem_state > 0) {
        actcycles += max(zero, timestamp - first_act_cycle);
        idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                        latest_act_cycle, timestamp);
      } else if (mem_state == 0) {
        precycles += max(zero, timestamp - last_pre_cycle);
        idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      }

      latest_pre_cycle = timestamp;
      last_pre_cycle   = timestamp;

      mem_state        = 0;

      for (int j = 0; j < nbrofBanks; j++) {
        bankstate[j] = 0;
      }
    } else if (type == MemCommand::PDN_F_ACT) {
      // If command is fast-exit active power-down - update number of
      // power-downs, set the power-down cycle and the memory mode to
      // fast-exit active power-down. Save states of all the banks from
      // the cycle before entering active power-down, to be returned to
      // after powering-up. Update active and active idle cycles.
      printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank);
      f_act_pdns++;
      for (int j = 0; j < nbrofBanks; j++) {
        last_states[j] = bankstate[j];
      }
      pdn_cycle  = timestamp;
      actcycles += max(zero, timestamp - first_act_cycle);
      idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                      latest_act_cycle, timestamp);
      mem_state  = CommandAnalysis::MS_PDN_F_ACT;
    } else if (type == MemCommand::PDN_S_ACT) {
      // If command is slow-exit active power-down - update number of
      // power-downs, set the power-down cycle and the memory mode to
      // slow-exit active power-down. Save states of all the banks from
      // the cycle before entering active power-down, to be returned to
      // after powering-up. Update active and active idle cycles.
      printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", type, timestamp, bank);
      s_act_pdns++;
      for (int j = 0; j < nbrofBanks; j++) {
        last_states[j] = bankstate[j];
      }
      pdn_cycle  = timestamp;
      actcycles += max(zero, timestamp - first_act_cycle);
      idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                      latest_act_cycle, timestamp);
      mem_state  = CommandAnalysis::MS_PDN_S_ACT;
    } else if (type == MemCommand::PDN_F_PRE) {
      // If command is fast-exit precharged power-down - update number of
      // power-downs, set the power-down cycle and the memory mode to
      // fast-exit precahrged power-down. Update precharged and precharged
      // idle cycles.
      printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank);
      f_pre_pdns++;
      pdn_cycle  = timestamp;
      precycles += max(zero, timestamp - last_pre_cycle);
      idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      mem_state  = CommandAnalysis::MS_PDN_F_PRE;
    } else if (type == MemCommand::PDN_S_PRE) {
      // If command is slow-exit precharged power-down - update number of
      // power-downs, set the power-down cycle and the memory mode to
      // slow-exit precahrged power-down. Update precharged and precharged
      // idle cycles.
      printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", type, timestamp, bank);
      s_pre_pdns++;
      pdn_cycle  = timestamp;
      precycles += max(zero, timestamp - last_pre_cycle);
      idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      mem_state  = CommandAnalysis::MS_PDN_S_PRE;
    } else if (type == MemCommand::PUP_ACT) {
      // If command is power-up in the active mode - check the power-down
      // exit-mode employed (fast or slow), update the number of power-down
      // and power-up cycles and the latest and first act cycle. Also, reset
      // all the individual bank states to the respective saved states
      // before entering power-down.
      if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
        f_act_pdcycles  += max(zero, timestamp - pdn_cycle);
        pup_act_cycles  += memSpec.memTimingSpec.XP;
        latest_act_cycle = max(timestamp, timestamp +
                               memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD);
      } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
        s_act_pdcycles += max(zero, timestamp - pdn_cycle);
        if (memSpec.memArchSpec.dll == false) {
          pup_act_cycles  += memSpec.memTimingSpec.XP;
          latest_act_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RCD);
        } else {
          pup_act_cycles  += memSpec.memTimingSpec.XPDLL -
                             memSpec.memTimingSpec.RCD;
          latest_act_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XPDLL -
                                 (2 * memSpec.memTimingSpec.RCD));
        }
      } else if ((mem_state != CommandAnalysis::MS_PDN_S_ACT) || (mem_state !=
                                                                  CommandAnalysis::MS_PDN_F_ACT)) {
        cerr << "Incorrect use of Active Power-Up!" << endl;
      }
      mem_state = 0;
      for (int j = 0; j < nbrofBanks; j++) {
        bankstate[j] = last_states[j];
        mem_state   += last_states[j];
      }
      first_act_cycle = timestamp;
    } else if (type == MemCommand::PUP_PRE) {
      // If command is power-up in the precharged mode - check the power-down
      // exit-mode employed (fast or slow), update the number of power-down
      // and power-up cycles and the latest and last pre cycle.
      if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
        f_pre_pdcycles  += max(zero, timestamp - pdn_cycle);
        pup_pre_cycles  += memSpec.memTimingSpec.XP;
        latest_pre_cycle = max(timestamp, timestamp +
                               memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP);
      } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
        s_pre_pdcycles += max(zero, timestamp - pdn_cycle);
        if (memSpec.memArchSpec.dll == false) {
          pup_pre_cycles  += memSpec.memTimingSpec.XP;
          latest_pre_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XP - memSpec.memTimingSpec.RP);
        } else {
          pup_pre_cycles  += memSpec.memTimingSpec.XPDLL -
                             memSpec.memTimingSpec.RCD;
          latest_pre_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XPDLL - memSpec.memTimingSpec.RCD -
                                 memSpec.memTimingSpec.RP);
        }
      } else if ((mem_state != CommandAnalysis::MS_PDN_S_PRE) || (mem_state !=
                                                                  CommandAnalysis::MS_PDN_F_PRE)) {
        cerr << "Incorrect use of Precharged Power-Up!" << endl;
      }
      mem_state      = 0;
      last_pre_cycle = timestamp;
    } else if (type == MemCommand::SREN) {
      // If command is self-refresh - update number of self-refreshes,
      // set memory state to SREF, update precharge and idle precharge
      // cycles and set the self-refresh cycle.
      printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", type, timestamp, bank);
      numberofsrefs++;
      sref_cycle = timestamp;
      precycles += max(zero, timestamp - last_pre_cycle);
      idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      mem_state  = CommandAnalysis::MS_SREF;
    } else if (type == MemCommand::SREX) {
      // If command is self-refresh exit - update the number of self-refresh
      // clock cycles, number of active and precharged auto-refresh clock
      // cycles during self-refresh and self-refresh exit based on the number
      // of cycles in the self-refresh mode and auto-refresh duration (RFC).
      // Set the last and latest precharge cycle accordingly and set the
      // memory state to 0.
      if (mem_state != CommandAnalysis::MS_SREF) {
        cerr << "Incorrect use of Self-Refresh Power-Up!" << endl;
      }
      if (max(zero, timestamp - sref_cycle) >= memSpec.memTimingSpec.RFC) {
        sref_cycles         += max(zero, timestamp - sref_cycle
                                   - memSpec.memTimingSpec.RFC);
        sref_ref_act_cycles += memSpec.memTimingSpec.RFC -
                               memSpec.memTimingSpec.RP;
        sref_ref_pre_cycles += memSpec.memTimingSpec.RP;
        last_pre_cycle       = timestamp;
        if (memSpec.memArchSpec.dll == false) {
          spup_cycles     += memSpec.memTimingSpec.XS;
          latest_pre_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XS - memSpec.memTimingSpec.RP);
        } else {
          spup_cycles     += memSpec.memTimingSpec.XSDLL -
                             memSpec.memTimingSpec.RCD;
          latest_pre_cycle = max(timestamp, timestamp +
                                 memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD
                                 - memSpec.memTimingSpec.RP);
        }
      } else {
        int64_t sref_diff = memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
        int64_t sref_pre  = max(zero, timestamp - sref_cycle - sref_diff);
        int64_t spup_pre  = memSpec.memTimingSpec.RP - sref_pre;
        int64_t sref_act  = max(zero, timestamp - sref_cycle);
        int64_t spup_act  = memSpec.memTimingSpec.RFC - sref_act;

        if (max(zero, timestamp - sref_cycle) >= sref_diff) {
          sref_ref_act_cycles += sref_diff;
          sref_ref_pre_cycles += sref_pre;
          spup_ref_pre_cycles += spup_pre;
          last_pre_cycle       = timestamp + spup_pre;
          if (memSpec.memArchSpec.dll == false) {
            spup_cycles     += memSpec.memTimingSpec.XS - spup_pre;
            latest_pre_cycle = max(timestamp, timestamp +
                                   memSpec.memTimingSpec.XS - spup_pre -
                                   memSpec.memTimingSpec.RP);
          } else {
            spup_cycles     += memSpec.memTimingSpec.XSDLL -
                               memSpec.memTimingSpec.RCD - spup_pre;
            latest_pre_cycle = max(timestamp, timestamp +
                                   memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD -
                                   spup_pre - memSpec.memTimingSpec.RP);
          }
        } else {
          sref_ref_act_cycles += sref_act;
          spup_ref_act_cycles += spup_act;
          spup_ref_pre_cycles += memSpec.memTimingSpec.RP;
          last_pre_cycle       = timestamp + spup_act + memSpec.memTimingSpec.RP;
          if (memSpec.memArchSpec.dll == false) {
            spup_cycles     += memSpec.memTimingSpec.XS - spup_act -
                               memSpec.memTimingSpec.RP;
            latest_pre_cycle = max(timestamp, timestamp +
                                   memSpec.memTimingSpec.XS - spup_act -
                                   (2 * memSpec.memTimingSpec.RP));
          } else {
            spup_cycles     += memSpec.memTimingSpec.XSDLL -
                               memSpec.memTimingSpec.RCD - spup_act -
                               memSpec.memTimingSpec.RP;
            latest_pre_cycle = max(timestamp, timestamp +
                                   memSpec.memTimingSpec.XSDLL - memSpec.memTimingSpec.RCD -
                                   spup_act - (2 * memSpec.memTimingSpec.RP));
          }
        }
      }
      mem_state = 0;
    } else if ((type == MemCommand::END) || (type == MemCommand::NOP)) {
      // May be optionally used at the end of memory trace for better accuracy
      // Update all counters based on completion of operations.
      if ((mem_state > 0) && (mem_state < 9)) {
        actcycles += max(zero, timestamp - first_act_cycle);
        idle_act_update(memSpec, latest_read_cycle, latest_write_cycle,
                        latest_act_cycle, timestamp);
      } else if (mem_state == 0) {
        precycles += max(zero, timestamp - last_pre_cycle);
        idle_pre_update(memSpec, timestamp, latest_pre_cycle);
      } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
        f_act_pdcycles += max(zero, timestamp - pdn_cycle);
      } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
        s_act_pdcycles += max(zero, timestamp - pdn_cycle);
      } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
        f_pre_pdcycles += max(zero, timestamp - pdn_cycle);
      } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
        s_pre_pdcycles += max(zero, timestamp - pdn_cycle);
      } else if (mem_state == CommandAnalysis::MS_SREF) {
        sref_cycles += max(zero, timestamp - sref_cycle);
      }
    }
  }
} // CommandAnalysis::evaluate

// To update idle period information whenever active cycles may be idle
void CommandAnalysis::idle_act_update(const MemorySpecification& memSpec,
                                      int64_t latest_read_cycle, int64_t latest_write_cycle,
                                      int64_t latest_act_cycle, int64_t timestamp)
{
  if (latest_read_cycle >= 0) {
    end_read_op = latest_read_cycle + timeToCompletion(memSpec,
                                                       MemCommand::RD) - 1;
  }

  if (latest_write_cycle >= 0) {
    end_write_op = latest_write_cycle + timeToCompletion(memSpec,
                                                         MemCommand::WR) - 1;
  }

  if (latest_act_cycle >= 0) {
    end_act_op = latest_act_cycle + timeToCompletion(memSpec,
                                                     MemCommand::ACT) - 1;
  }

  idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op),
                                              end_act_op));
} // CommandAnalysis::idle_act_update

// To update idle period information whenever precharged cycles may be idle
void CommandAnalysis::idle_pre_update(const MemorySpecification& memSpec,
                                      int64_t timestamp, int64_t latest_pre_cycle)
{
  if (latest_pre_cycle > 0) {
    idlecycles_pre += max(zero, timestamp - latest_pre_cycle -
                          memSpec.memTimingSpec.RP);
  } else if (latest_pre_cycle == 0) {
    idlecycles_pre += max(zero, timestamp - latest_pre_cycle);
  }
}

void CommandAnalysis::printWarningIfActive(const string& warning, int type, int64_t timestamp, int bank)
{
  if (mem_state != 0) {
    printWarning(warning, type, timestamp, bank);
  }
}

void CommandAnalysis::printWarningIfNotActive(const string& warning, int type, int64_t timestamp, int bank)
{
  if (mem_state == 0) {
    printWarning(warning, type, timestamp, bank);
  }
}

void CommandAnalysis::printWarning(const string& warning, int type, int64_t timestamp, int bank)
{
  cerr << "WARNING: " << warning << endl;
  cerr << "Command: " << type << ", Timestamp: " << timestamp <<
    ", Bank: " << bank << endl;
}