summaryrefslogtreecommitdiff
path: root/ext/drampower/src/MemoryPowerModel.cc
blob: e020830e67452b8a458b3d9bc293a8155d8e8c39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
 * Copyright (c) 2012-2014, TU Delft
 * Copyright (c) 2012-2014, TU Eindhoven
 * Copyright (c) 2012-2014, TU Kaiserslautern
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji
 *
 */

#include "MemoryPowerModel.h"

#include <stdint.h>

#include <cmath>  // For pow
#include <iostream>  // fmtflags


using namespace std;
using namespace Data;

// Calculate energy and average power consumption for the given command trace

void MemoryPowerModel::power_calc(const MemorySpecification& memSpec,
                                  const CommandAnalysis& c,
                                  int term)
{
  const MemTimingSpec& t                 = memSpec.memTimingSpec;
  const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
  const MemPowerSpec&  mps               = memSpec.memPowerSpec;

  energy.act_energy          = 0.0;
  energy.pre_energy          = 0.0;
  energy.read_energy         = 0.0;
  energy.write_energy        = 0.0;
  energy.ref_energy          = 0.0;
  energy.act_stdby_energy    = 0.0;
  energy.pre_stdby_energy    = 0.0;
  energy.idle_energy_act     = 0.0;
  energy.idle_energy_pre     = 0.0;
  energy.total_energy        = 0.0;
  energy.f_act_pd_energy     = 0.0;
  energy.f_pre_pd_energy     = 0.0;
  energy.s_act_pd_energy     = 0.0;
  energy.s_pre_pd_energy     = 0.0;
  energy.sref_energy         = 0.0;
  energy.sref_ref_energy     = 0.0;
  energy.sref_ref_act_energy = 0.0;
  energy.sref_ref_pre_energy = 0.0;
  energy.spup_energy         = 0.0;
  energy.spup_ref_energy     = 0.0;
  energy.spup_ref_act_energy = 0.0;
  energy.spup_ref_pre_energy = 0.0;
  energy.pup_act_energy      = 0.0;
  energy.pup_pre_energy      = 0.0;
  power.IO_power             = 0.0;
  power.WR_ODT_power         = 0.0;
  power.TermRD_power         = 0.0;
  power.TermWR_power         = 0.0;
  energy.read_io_energy      = 0.0;
  energy.write_term_energy   = 0.0;
  energy.read_oterm_energy   = 0.0;
  energy.write_oterm_energy  = 0.0;
  energy.io_term_energy      = 0.0;

  // How long a single burst takes, measured in command-clock cycles.
  int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate;

  // IO and Termination Power measures are included, if required.
  if (term) {
    io_term_power(memSpec);

    // memArchSpec.width represents the number of data (dq) pins.
    // 1 DQS pin is associated with every data byte
    int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8;
    // 1 DQS and 1 DM pin is associated with every data byte
    int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8;
    // Size of one clock period for the data bus.
    double ddrPeriod = t.clkPeriod / static_cast<double>(memArchSpec.dataRate);

    // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin
    energy.read_io_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
                                             ddrPeriod,
                                             power.IO_power,
                                             dqPlusDqsBits);

    // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM
    energy.write_term_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
                                                ddrPeriod,
                                                power.WR_ODT_power,
                                                dqPlusDqsPlusMaskBits);

    if (memArchSpec.nbrOfRanks > 1) {
      // Termination power consumed in the idle rank during reads on the active
      // rank by each DQ (data) and DQS (data strobe) pin.
      energy.read_oterm_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
                                                  ddrPeriod,
                                                  power.TermRD_power,
                                                  dqPlusDqsBits);

      // Termination power consumed in the idle rank during writes on the active
      // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin.
      energy.write_oterm_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
                                                   ddrPeriod,
                                                   power.TermWR_power,
                                                   dqPlusDqsPlusMaskBits);
    }

    // Sum of all IO and termination energy
    energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
                            + energy.read_oterm_energy + energy.write_oterm_energy;
  }

  total_cycles = c.actcycles + c.precycles +
                 c.f_act_pdcycles + c.f_pre_pdcycles +
                 c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles
                 + c.sref_ref_act_cycles + c.sref_ref_pre_cycles +
                 c.spup_ref_act_cycles + c.spup_ref_pre_cycles;

  EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod);

  energy.act_energy       = vdd0Domain.calcTivEnergy(c.numberofacts   * t.RAS          , mps.idd0 - mps.idd3n);
  energy.pre_energy       = vdd0Domain.calcTivEnergy(c.numberofpres   * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
  energy.read_energy      = vdd0Domain.calcTivEnergy(c.numberofreads  * burstCc        , mps.idd4r - mps.idd3n);
  energy.write_energy     = vdd0Domain.calcTivEnergy(c.numberofwrites * burstCc        , mps.idd4w - mps.idd3n);
  energy.ref_energy       = vdd0Domain.calcTivEnergy(c.numberofrefs   * t.RFC          , mps.idd5 - mps.idd3n);
  energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n);
  energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n);
  // Idle energy in the active standby clock cycles
  energy.idle_energy_act  = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n);
  // Idle energy in the precharge standby clock cycles
  energy.idle_energy_pre  = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n);
  // fast-exit active power-down cycles energy
  energy.f_act_pd_energy  = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1);
  // fast-exit precharged power-down cycles energy
  energy.f_pre_pd_energy  = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1);
  // slow-exit active power-down cycles energy
  energy.s_act_pd_energy  = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0);
  // slow-exit precharged power-down cycles energy
  energy.s_pre_pd_energy  = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0);

  // self-refresh cycles energy including a refresh per self-refresh entry
  energy.sref_energy = engy_sref(mps.idd6, mps.idd3n,
                                 mps.idd5, mps.vdd,
                                 static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles),
                                 static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles),
                                 static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod);

  // background energy during active auto-refresh cycles in self-refresh
  energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0);
  // background energy during precharged auto-refresh cycles in self-refresh
  energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0);
  // background energy during active auto-refresh cycles in self-refresh exit
  energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n);
  // background energy during precharged auto-refresh cycles in self-refresh exit
  energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n);
  // self-refresh power-up cycles energy -- included
  energy.spup_energy         = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n);
  // active power-up cycles energy - same as active standby -- included
  energy.pup_act_energy      = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n);
  // precharged power-up cycles energy - same as precharged standby -- included
  energy.pup_pre_energy      = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n);

  // similar equations as before to support multiple voltage domains in LPDDR2
  // and WIDEIO memories
  if (memArchSpec.twoVoltageDomains) {
    EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod);

    energy.act_energy       += vdd2Domain.calcTivEnergy(c.numberofacts   * t.RAS          , mps.idd02 - mps.idd3n2);
    energy.pre_energy       += vdd2Domain.calcTivEnergy(c.numberofpres   * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
    energy.read_energy      += vdd2Domain.calcTivEnergy(c.numberofreads  * burstCc        , mps.idd4r2 - mps.idd3n2);
    energy.write_energy     += vdd2Domain.calcTivEnergy(c.numberofwrites * burstCc        , mps.idd4w2 - mps.idd3n2);
    energy.ref_energy       += vdd2Domain.calcTivEnergy(c.numberofrefs   * t.RFC          , mps.idd52 - mps.idd3n2);
    energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2);
    energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2);
    // Idle energy in the active standby clock cycles
    energy.idle_energy_act  += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2);
    // Idle energy in the precharge standby clock cycles
    energy.idle_energy_pre  += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2);
    // fast-exit active power-down cycles energy
    energy.f_act_pd_energy  += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12);
    // fast-exit precharged power-down cycles energy
    energy.f_pre_pd_energy  += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12);
    // slow-exit active power-down cycles energy
    energy.s_act_pd_energy  += vdd2Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p02);
    // slow-exit precharged power-down cycles energy
    energy.s_pre_pd_energy  += vdd2Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p02);

    energy.sref_energy      += engy_sref(mps.idd62, mps.idd3n2,
                                         mps.idd52, mps.vdd2,
                                         static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles),
                                         static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles),
                                         static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod);

    // background energy during active auto-refresh cycles in self-refresh
    energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p02);
    // background energy during precharged auto-refresh cycles in self-refresh
    energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p02);
    // background energy during active auto-refresh cycles in self-refresh exit
    energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n2);
    // background energy during precharged auto-refresh cycles in self-refresh exit
    energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n2);
    // self-refresh power-up cycles energy -- included
    energy.spup_energy         += vdd2Domain.calcTivEnergy(c.spup_cycles, mps.idd2n2);
    // active power-up cycles energy - same as active standby -- included
    energy.pup_act_energy      += vdd2Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n2);
    // precharged power-up cycles energy - same as precharged standby -- included
    energy.pup_pre_energy      += vdd2Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n2);
  }

  // auto-refresh energy during self-refresh cycles
  energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;

  // auto-refresh energy during self-refresh exit cycles
  energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;

  // adding all energy components for the active rank and all background and idle
  // energy components for both ranks (in a dual-rank system)
  energy.total_energy = energy.act_energy + energy.pre_energy + energy.read_energy +
                        energy.write_energy + energy.ref_energy + energy.io_term_energy +
                        static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy +
                                                  energy.pre_stdby_energy + energy.sref_energy +
                                                  energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy
                                                  + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy);

  // Calculate the average power consumption
  power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
} // MemoryPowerModel::power_calc

void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c) const
{
  const MemTimingSpec& memTimingSpec     = memSpec.memTimingSpec;
  const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
  const uint64_t nRanks = static_cast<uint64_t>(memArchSpec.nbrOfRanks);
  const char eUnit[] = " pJ";

  ios_base::fmtflags flags = cout.flags();
  streamsize precision = cout.precision();
  cout.precision(0);
  cout << "* Trace Details:" << fixed << endl
       << endl << "#ACT commands: "                 << c.numberofacts
       << endl << "#RD + #RDA commands: "           << c.numberofreads
       << endl << "#WR + #WRA commands: "           << c.numberofwrites
  /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */
       << endl << "#PRE (+ PREA) commands: "        << c.numberofpres
       << endl << "#REF commands: "                 << c.numberofrefs
       << endl << "#Active Cycles: "                << c.actcycles
       << endl << "  #Active Idle Cycles: "         << c.idlecycles_act
       << endl << "  #Active Power-Up Cycles: "     << c.pup_act_cycles
       << endl << "    #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles
       << endl << "#Precharged Cycles: "            << c.precycles
       << endl << "  #Precharged Idle Cycles: "     << c.idlecycles_pre
       << endl << "  #Precharged Power-Up Cycles: " << c.pup_pre_cycles
       << endl << "    #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles
       << endl << "  #Self-Refresh Power-Up Cycles: "                          << c.spup_cycles
       << endl << "Total Idle Cycles (Active + Precharged): "                  << c.idlecycles_act + c.idlecycles_pre
       << endl << "#Power-Downs: "                                             << c.f_act_pdns +  c.s_act_pdns + c.f_pre_pdns + c.s_pre_pdns
       << endl << "  #Active Fast-exit Power-Downs: "                          << c.f_act_pdns
       << endl << "  #Active Slow-exit Power-Downs: "                          << c.s_act_pdns
       << endl << "  #Precharged Fast-exit Power-Downs: "                      << c.f_pre_pdns
       << endl << "  #Precharged Slow-exit Power-Downs: "                      << c.s_pre_pdns
       << endl << "#Power-Down Cycles: "                                       << c.f_act_pdcycles + c.s_act_pdcycles + c.f_pre_pdcycles + c.s_pre_pdcycles
       << endl << "  #Active Fast-exit Power-Down Cycles: "                    << c.f_act_pdcycles
       << endl << "  #Active Slow-exit Power-Down Cycles: "                    << c.s_act_pdcycles
       << endl << "    #Auto-Refresh Active cycles during Self-Refresh: "      << c.sref_ref_act_cycles
       << endl << "  #Precharged Fast-exit Power-Down Cycles: "                << c.f_pre_pdcycles
       << endl << "  #Precharged Slow-exit Power-Down Cycles: "                << c.s_pre_pdcycles
       << endl << "    #Auto-Refresh Precharged cycles during Self-Refresh: "  << c.sref_ref_pre_cycles
       << endl << "#Auto-Refresh Cycles: "                                     << c.numberofrefs * memTimingSpec.RFC
       << endl << "#Self-Refreshes: "                                          << c.numberofsrefs
       << endl << "#Self-Refresh Cycles: "                                     << c.sref_cycles
       << endl << "----------------------------------------"
       << endl << "Total Trace Length (clock cycles): " << total_cycles
       << endl << "----------------------------------------" << endl;

  cout.precision(2);
  cout << endl << "* Trace Power and Energy Estimates:" << endl
       << endl << "ACT Cmd Energy: " << energy.act_energy   << eUnit
       << endl << "PRE Cmd Energy: " << energy.pre_energy   << eUnit
       << endl << "RD Cmd Energy: "  << energy.read_energy  << eUnit
       << endl << "WR Cmd Energy: "  << energy.write_energy << eUnit;

  if (term) {
    cout << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl;
    // No Termination for LPDDR/2/3 and DDR memories
    if (memSpec.memArchSpec.termination) {
      cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl;
    }

    if (nRanks > 1 && memSpec.memArchSpec.termination) {
      cout <<         "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit
           << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl;
    }
  }

  double nRanksDouble = static_cast<double>(nRanks);

  cout <<         "ACT Stdby Energy: "                                                                      << nRanksDouble * energy.act_stdby_energy << eUnit
       << endl << "  Active Idle Energy: "                                                                  << nRanksDouble * energy.idle_energy_act << eUnit
       << endl << "  Active Power-Up Energy: "                                                              << nRanksDouble * energy.pup_act_energy << eUnit
       << endl << "    Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "           << nRanksDouble * energy.spup_ref_act_energy << eUnit
       << endl << "PRE Stdby Energy: "                                                                      << nRanksDouble * energy.pre_stdby_energy << eUnit
       << endl << "  Precharge Idle Energy: "                                                               << nRanksDouble * energy.idle_energy_pre << eUnit
       << endl << "  Precharged Power-Up Energy: "                                                          << nRanksDouble * energy.pup_pre_energy << eUnit
       << endl << "    Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "        << nRanksDouble * energy.spup_ref_pre_energy << eUnit
       << endl << "  Self-Refresh Power-Up Energy: "                                                        << nRanksDouble * energy.spup_energy << eUnit
       << endl << "Total Idle Energy (Active + Precharged): "                                               << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit
       << endl << "Total Power-Down Energy: "                                                               << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit
       << endl << "  Fast-Exit Active Power-Down Energy: "                                                  << nRanksDouble * energy.f_act_pd_energy << eUnit
       << endl << "  Slow-Exit Active Power-Down Energy: "                                                  << nRanksDouble * energy.s_act_pd_energy << eUnit
       << endl << "    Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: "     << nRanksDouble * energy.sref_ref_act_energy << eUnit
       << endl << "  Fast-Exit Precharged Power-Down Energy: "                                              << nRanksDouble * energy.f_pre_pd_energy << eUnit
       << endl << "  Slow-Exit Precharged Power-Down Energy: "                                              << nRanksDouble * energy.s_pre_pd_energy << eUnit
       << endl << "    Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit
       << endl << "Auto-Refresh Energy: "                                                                   << energy.ref_energy << eUnit
       << endl << "Self-Refresh Energy: "                                                                   << nRanksDouble * energy.sref_energy << eUnit
       << endl << "----------------------------------------"
       << endl << "Total Trace Energy: "                                                                    << energy.total_energy << eUnit
       << endl << "Average Power: "                                                                         << power.average_power << " mW"
       << endl << "----------------------------------------" << endl;

  cout.flags(flags);
  cout.precision(precision);
} // MemoryPowerModel::power_print

// Self-refresh active energy estimation (not including background energy)
double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5,
                                   double vdd, double sref_cycles, double sref_ref_act_cycles,
                                   double sref_ref_pre_cycles, double spup_ref_act_cycles,
                                   double spup_ref_pre_cycles, double clk)
{
  double sref_energy;

  sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
                                                           + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
                * vdd * clk;
  return sref_energy;
}

// IO and Termination power calculation based on Micron Power Calculators
// Absolute power measures are obtained from Micron Power Calculator (mentioned in mW)
void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec)
{
  const MemTimingSpec& memTimingSpec     = memSpec.memTimingSpec;
  const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
  const MemPowerSpec&  memPowerSpec      = memSpec.memPowerSpec;

  power.IO_power     = memPowerSpec.ioPower;    // in mW
  power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW

  if (memArchSpec.nbrOfRanks > 1) {
    power.TermRD_power = memPowerSpec.termRdPower; // in mW
    power.TermWR_power = memPowerSpec.termWrPower; // in mW
  }

  if (memPowerSpec.capacitance != 0.0) {
    // If capacity is given, then IO Power depends on DRAM clock frequency.
    power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000;
  }
} // MemoryPowerModel::io_term_power


double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const
{
  return static_cast<double>(cycles) * period * power * static_cast<double>(numBits);
}

// time (t) * current (I) * voltage (V) energy calculation
double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const
{
  return static_cast<double>(cycles) * clkPeriod * current * voltage;
}