summaryrefslogtreecommitdiff
path: root/ext/dsent/model/electrical/BroadcastHTree.cc
blob: efac128e762d871c6209cd507b60fab3ea825d60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include "model/electrical/BroadcastHTree.h"

#include <cmath>
#include <vector>

#include "model/PortInfo.h"
#include "model/EventInfo.h"
#include "model/TransitionInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/StdCell.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalTimingTree.h"
#include "model/timing_graph/ElectricalNet.h"

namespace DSENT
{
    using std::pow;
    using std::vector;

    BroadcastHTree::BroadcastHTree(const String& instance_name_, const TechModel* tech_model_)
        : ElectricalModel(instance_name_, tech_model_)
    {
        initParameters();
        initProperties();

        m_leaf_load_ = NULL;
        m_leaf_head_driver_ = NULL;
        m_leaf_head_load_ = NULL;
    }

    BroadcastHTree::~BroadcastHTree()
    {
        clearPtrVector<StdCell>(&m_repeaters_);
        clearPtrVector<ElectricalLoad>(&m_repeater_loads_);
        clearPtrVector<ElectricalTimingTree>(&m_timing_trees_);
        clearPtrVector<StdCell>(&m_leaf_drivers_);
        delete m_leaf_load_;
        delete m_leaf_head_driver_;
        delete m_leaf_head_load_;
    }

    void BroadcastHTree::initParameters()
    {
        addParameterName("NumberLevels");
        addParameterName("NumberBits");
        addParameterName("WireLayer");
        addParameterName("WireWidthMultiplier", 1.0);
        addParameterName("WireSpacingMultiplier", 1.0);
        return;
    }

    void BroadcastHTree::initProperties()
    {
        addPropertyName("SitePitch");
        addPropertyName("TotalLoadCapPerBit");
        return;
    }

    BroadcastHTree* BroadcastHTree::clone() const
    {
        // TODO
        return NULL;
    }

    void BroadcastHTree::constructModel()
    {
        // Get parameters
        unsigned int number_levels = getParameter("NumberLevels").toUInt();
        unsigned int number_bits = getParameter("NumberBits").toUInt();
        const String& wire_layer = getParameter("WireLayer");
        double wire_width_multiplier = getParameter("WireWidthMultiplier").toDouble();
        double wire_spacing_multiplier = getParameter("WireSpacingMultiplier").toDouble();

        ASSERT(number_levels > 0, "[Error] " + getInstanceName() +
                " -> Number of levels must be > 0!");
        ASSERT(number_bits > 0, "[Error] " + getInstanceName() +
                " -> Number of bits must be > 0!");
        ASSERT(getTechModel()->isWireLayerExist(wire_layer), "[Error] " + getInstanceName() + 
                " -> Wire layer does not exist!");
        ASSERT(wire_width_multiplier >= 1.0, "[Error] " + getInstanceName() + 
                " -> Wire width multiplier must be >= 1.0!");
        ASSERT(wire_spacing_multiplier >= 1.0, "[Error] " + getInstanceName() + 
                " -> Wire spacing multiplier must be >= 1.0!");

        double wire_min_width = getTechModel()->get("Wire->" + wire_layer + "->MinWidth").toDouble();
        double wire_min_spacing = getTechModel()->get("Wire->" + wire_layer + "->MinSpacing").toDouble();

        double wire_width = wire_min_width * wire_width_multiplier;
        double wire_spacing = wire_min_spacing * wire_spacing_multiplier;

        double wire_cap_per_len = getTechModel()->calculateWireCapacitance(wire_layer, wire_width, wire_spacing, 1.0);
        double wire_res_per_len = getTechModel()->calculateWireResistance(wire_layer, wire_width, 1.0);

        getGenProperties()->set("WireWidth", wire_width);
        getGenProperties()->set("WireSpacing", wire_spacing);
        getGenProperties()->set("WireCapacitancePerLength", wire_cap_per_len);
        getGenProperties()->set("WireResistancePerLength", wire_res_per_len);

        // Create ports
        createInputPort("In", makeNetIndex(0, number_bits-1));
        createOutputPort("Out", makeNetIndex(0, number_bits-1));

        // Create connections
        createNet("InTmp");
        createNet("OutTmp");
        assignVirtualFanin("InTmp", "In");
        assignVirtualFanout("Out", "OutTmp");

        createLoad("In_Cap");
        createDelay("In_to_Out_delay");

        ElectricalLoad* in_cap = getLoad("In_Cap");
        ElectricalDelay* in_to_out_delay = getDelay("In_to_Out_delay");

        getNet("InTmp")->addDownstreamNode(in_cap);
        in_cap->addDownstreamNode(in_to_out_delay);

        // Init 
        for(unsigned int i = 0; i < number_levels; ++i)
        {
            StdCell* repeater = getTechModel()->getStdCellLib()->createStdCell("INV", "Repeater" + (String)i);
            ElectricalLoad* repeater_load = new ElectricalLoad("RepeaterIn_Cap" + (String)i, this);
            ElectricalTimingTree* timing_tree = new ElectricalTimingTree("RepeatedLink" + (String)i, this);

            repeater->construct();
            repeater->getNet("Y")->addDownstreamNode(repeater_load);
            m_repeaters_.push_back(repeater);
            m_repeater_loads_.push_back(repeater_load);
            m_timing_trees_.push_back(timing_tree);
        }

        // Create area, power, and event results
        createElectricalAtomicResults();
        createElectricalEventResult("Send");
        addEventResult(new AtomicResult("DriveLoad"));
        addEventResult(new AtomicResult("DriveTree"));

        getEventResult("Send")->addSubResult(getEventResult("DriveLoad"), "Self", 1.0);
        getEventResult("Send")->addSubResult(getEventResult("DriveTree"), "Self", 1.0);
        return;
    }

    void BroadcastHTree::updateModel()
    {
        // Get properties
        double site_pitch = getProperty("SitePitch").toDouble();
        double total_load_cap_per_bit = getProperty("TotalLoadCapPerBit").toDouble();

        ASSERT(site_pitch > 0, "[Error] " + getInstanceName() + 
                " -> Site pitch must be > 0!");
        ASSERT(total_load_cap_per_bit >= 0.0, "[Error] " + getInstanceName() + 
                " -> Total load capacitance per bit must be >= 0!");

        // Get parameters
        unsigned int number_levels = getParameter("NumberLevels");
        unsigned int number_bits = getParameter("NumberBits");

        const String& wire_layer = getParameter("WireLayer");
        double wire_width = getGenProperties()->get("WireWidth").toDouble();
        double wire_spacing = getGenProperties()->get("WireSpacing").toDouble();
        double wire_cap_per_len = getGenProperties()->get("WireCapacitancePerLength").toDouble();
        double wire_res_per_len = getGenProperties()->get("WireResistancePerLength").toDouble();

        double leaf_load_cap = total_load_cap_per_bit / pow(2.0, (double)(number_levels-1));

        vector<double> wire_caps(number_levels, 0.0);
        vector<double> wire_ress(number_levels, 0.0);
        double wire_length = site_pitch / 2.0;
        for(unsigned int i = 0; i < number_levels; ++i)
        {
            wire_caps[i] = wire_cap_per_len * wire_length;
            wire_ress[i] = wire_res_per_len * wire_length;
            wire_length /= 2.0;
        }

        // Start sizing each stage of repeaters for a transition times. TODO: Find a heuristic about
        // how the transition time is done...place and route tools make this user-specified
        double required_transition = 40e-12;
        m_number_segments_.resize(number_levels, 1);
        for(unsigned int i = 0; i < number_levels; ++i)
        {
            Log::printLine(getInstanceName() + " -> Beginning Repeater Insertion " + (String)i);

            double transition;
            unsigned int iteration = 0;
            m_repeaters_[i]->setMinDrivingStrength();
            m_repeaters_[i]->getNet("Y")->setDistributedCap(wire_caps[i] / m_number_segments_[i]);
            m_repeaters_[i]->getNet("Y")->setDistributedRes(wire_ress[i] / m_number_segments_[i]);
            m_repeater_loads_[i]->setLoadCap(m_repeaters_[i]->getNet("A")->getTotalDownstreamCap());
            
            transition = m_timing_trees_[i]->calculateNodeTransition(m_repeaters_[i]->getNet("Y"));

            while(required_transition < transition)
            {
                Log::printLine(getInstanceName() + " -> Repeater Insertion Iteration " + (String)iteration + 
                        ": Required transition = " + (String)required_transition + 
                        ", Transition = " + (String)transition + 
                        ", Slack = " + (String)(required_transition - transition) + 
                        ", Number of repeaters = " + (String)m_number_segments_[i]);

                // Size up if transition is not met
                while(required_transition < transition)
                {
                    if(m_repeaters_[i]->hasMaxDrivingStrength())
                    {
                        break;
                    }
                    m_repeaters_[i]->increaseDrivingStrength();
                    m_repeater_loads_[i]->setLoadCap(m_repeaters_[i]->getNet("A")->getTotalDownstreamCap());
                    transition = m_timing_trees_[i]->calculateNodeTransition(m_repeaters_[i]->getNet("Y"));

                    iteration++;
                    Log::printLine(getInstanceName() + " -> Slack: " + (String)(required_transition - transition));
                }
                // Increase number of segments if thansition is not met
                if(required_transition < transition)
                {
                    m_number_segments_[i]++;
                    m_repeaters_[i]->setMinDrivingStrength();
                    m_repeaters_[i]->getNet("Y")->setDistributedCap(wire_caps[i] / m_number_segments_[i]);
                    m_repeaters_[i]->getNet("Y")->setDistributedRes(wire_ress[i] / m_number_segments_[i]);
                    m_repeater_loads_[i]->setLoadCap(m_repeaters_[i]->getNet("A")->getTotalDownstreamCap());
                    transition = m_timing_trees_[i]->calculateNodeTransition(m_repeaters_[i]->getNet("Y"));
                }
            }
            Log::printLine(getInstanceName() + " -> Repeater Insertion " + (String)i + " Ended after Iteration: " + (String)iteration + 
                    ": Required transition = " + (String)required_transition + 
                    ", Transition = " + (String)transition + 
                    ", Slack = " + (String)(required_transition - transition) + 
                    ", Number of repeaters = " + (String)m_number_segments_[i]);
        }

        // Insert inverters to ensure the transition time at the leaf
        int min_driving_strength_idx = m_repeaters_[number_levels-1]->getDrivingStrengthIdx();

        // Remove everything and rebuild again
        clearPtrVector<StdCell>(&m_leaf_drivers_);
        delete m_leaf_load_;
        delete m_leaf_head_driver_;
        delete m_leaf_head_load_;

        m_leaf_head_driver_ = getTechModel()->getStdCellLib()->createStdCell("INV", "LeafHeadDriver");
        m_leaf_head_driver_->construct();
        m_leaf_head_driver_->setDrivingStrengthIdx(min_driving_strength_idx);

        m_leaf_head_load_ = new ElectricalLoad("LeafHead_Cap", this);
        m_leaf_head_driver_->getNet("Y")->addDownstreamNode(m_leaf_head_load_);

        m_leaf_load_ = new ElectricalLoad("Leaf_Cap", this);
        m_leaf_load_->setLoadCap(leaf_load_cap);

        StdCell* inv = getTechModel()->getStdCellLib()->createStdCell("INV", "LeafDriver0");
        inv->construct();
        inv->getNet("Y")->addDownstreamNode(m_leaf_load_);
        inv->setDrivingStrengthIdx(min_driving_strength_idx);
        m_leaf_drivers_.push_back(inv);

        m_leaf_head_load_->setLoadCap(m_leaf_drivers_[0]->getNet("A")->getTotalDownstreamCap());

        // Start inserting the buffers
        ElectricalTimingTree t2("LeafHead", m_leaf_head_driver_);
        int curr_driver = 0;
        unsigned int iteration = 0;
        while(true)
        {
            ElectricalTimingTree t("LeafDriver", m_leaf_drivers_[curr_driver]);
            double transition = t.calculateNodeTransition(m_leaf_drivers_[curr_driver]->getNet("Y"));
            Log::printLine(getInstanceName() + " -> Buffer Insertion : " + (String)iteration + 
                    ": Required transition = " + (String)required_transition + 
                    ", Transition = " + (String)transition + 
                    ", Slack = " + (String)(required_transition - transition) + 
                    ", Number of buffers = " + (String)(curr_driver+1));

            // Size up the inverter at curr_driver so that it could drive the next stage
            while(required_transition < transition)
            {
                if(m_leaf_drivers_[curr_driver]->hasMaxDrivingStrength())
                {
                    const String& warning_msg = "[Warning] " + getInstanceName() + " -> Transition not met" + 
                        ": Required transition = " + (String)required_transition + 
                        ", Transition = " + (String)transition + 
                        ", Slack = " + (String)(required_transition - transition);
                    Log::printLine(std::cerr, warning_msg);
                    break;
                }
                m_leaf_drivers_[curr_driver]->increaseDrivingStrength();
                transition = t.calculateNodeTransition(m_leaf_drivers_[curr_driver]->getNet("Y"));
                iteration++;
            }
            // Add an additional inverter if the transition for the first stage does not meet the required transition
            m_leaf_head_load_->setLoadCap(m_leaf_drivers_[curr_driver]->getNet("A")->getTotalDownstreamCap());
            transition = t2.calculateNodeTransition(m_leaf_head_driver_->getNet("Y"));
            if(required_transition < transition)
            {
                inv = getTechModel()->getStdCellLib()->createStdCell("INV", "LeafDriver" + (String)(curr_driver+1));
                inv->construct();
                inv->getNet("Y")->addDownstreamNode(m_leaf_drivers_[curr_driver]->getNet("A"));
                inv->setDrivingStrengthIdx(min_driving_strength_idx);
                m_leaf_drivers_.push_back(inv);
                curr_driver++;
            }
            else
            {
                Log::printLine(getInstanceName() + " -> Buffer Insertion Ended after Iteration: " + (String)iteration + 
                        ", Number of buffers = " + (String)(curr_driver+1));
                break;
            }
        }


        // Update electrical interfaces
        getLoad("In_Cap")->setLoadCap(m_repeaters_[0]->getNet("A")->getTotalDownstreamCap());
        // TODO
        getDelay("In_to_Out_delay")->setDelay(0.0);

        // Reset all the atomic results to 0 before start updating new results
        resetElectricalAtomicResults();

        // Update area, power results
        double wire_area = 0.0;
        wire_length = site_pitch / 2.0;
        unsigned int number_branches = 1;
        for(unsigned int i = 0; i < number_levels; ++i)
        {
            wire_area += wire_length * (wire_width + wire_spacing) * number_branches * number_bits;
            addElecticalAtomicResultValues(m_repeaters_[i], m_number_segments_[i] * number_branches * number_bits);
            wire_length /= 2.0;
            number_branches *= 2;
        }
        number_branches = (unsigned int)pow(2.0, (double)number_levels-1);
        addElecticalAtomicResultValues(m_leaf_head_driver_, number_branches * number_bits);
        for(unsigned int i = 0; i < m_leaf_drivers_.size(); ++i)
        {
            addElecticalAtomicResultValues(m_leaf_drivers_[i], number_branches * number_bits);
        }
        addElecticalWireAtomicResultValue(wire_layer, wire_area);

        return;
    }

    void BroadcastHTree::useModel()
    {
        unsigned int number_bits = getParameter("NumberBits").toUInt();
        unsigned int number_levels = getParameter("NumberLevels").toUInt();

        // Update the transition information for the modeled repeaters
        // Since we only modeled one repeater. So the transition information for 0->0 and 1->1 
        // is averaged out
        const TransitionInfo& trans_In = getInputPort("In")->getTransitionInfo();
        double average_static_transition = (trans_In.getNumberTransitions00() + trans_In.getNumberTransitions11()) / 2.0;
        TransitionInfo mod_trans_In(average_static_transition, trans_In.getNumberTransitions01(), average_static_transition);

        // Propagate the transition information
        propagateTransitionInfo();

        // Update leakage and event
        double energy = 0.0;
        double power = 0.0;
        unsigned int number_branches = 1;
        for(unsigned int i = 0; i < number_levels; ++i)
        {
            assignPortTransitionInfo(m_repeaters_[i], "A", mod_trans_In);
            m_repeaters_[i]->use();
            power += m_repeaters_[i]->getNddPowerResult("Leakage")->calculateSum() * m_number_segments_[i] * number_branches;
            energy += m_repeaters_[i]->getEventResult("INV")->calculateSum() * m_number_segments_[i] * number_branches;
            number_branches *= 2;
        }
        energy *= number_bits;
        getEventResult("DriveTree")->setValue(energy);

        energy = 0.0;
        assignPortTransitionInfo(m_leaf_head_driver_, "A", mod_trans_In);
        m_leaf_head_driver_->use();
        number_branches = (unsigned int)pow(2.0, (double)number_levels-1);
        power += m_leaf_head_driver_->getNddPowerResult("Leakage")->calculateSum() * number_branches;
        energy += m_leaf_head_driver_->getEventResult("INV")->calculateSum() * number_branches;
        for(unsigned int i = 0; i < m_leaf_drivers_.size(); ++i)
        {
            assignPortTransitionInfo(m_leaf_drivers_[i], "A", mod_trans_In);
            m_leaf_drivers_[i]->use();
            power += m_leaf_drivers_[i]->getNddPowerResult("Leakage")->calculateSum() * number_branches;
            energy += m_leaf_drivers_[i]->getEventResult("INV")->calculateSum() * number_branches;
        }
        power *= number_bits;
        energy *= number_bits;
        getEventResult("DriveLoad")->setValue(energy);
        getNddPowerResult("Leakage")->setValue(power);

        return;
    }

    void BroadcastHTree::propagateTransitionInfo()
    {
        propagatePortTransitionInfo("Out", "In");
        return;
    }
} // namespace DSENT