1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/electrical/Multiplexer.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/timing_graph/ElectricalDriverMultiplier.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/std_cells/StdCell.h"
#include "model/std_cells/StdCellLib.h"
namespace DSENT
{
Multiplexer::Multiplexer(const String& instance_name_, const TechModel* tech_model_)
: ElectricalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
Multiplexer::~Multiplexer()
{}
void Multiplexer::initParameters()
{
addParameterName("NumberInputs");
addParameterName("NumberBits");
addParameterName("BitDuplicate", "TRUE");
addParameterName("IsTopLevel", "TRUE");
return;
}
void Multiplexer::initProperties()
{
return;
}
Multiplexer* Multiplexer::clone() const
{
return NULL;
}
void Multiplexer::constructModel()
{
// Get parameters
unsigned int number_bits = (unsigned int) getParameter("NumberBits");
unsigned int number_inputs = (unsigned int) getParameter("NumberInputs");
unsigned int number_selects = (unsigned int) ceil(log2((double) number_inputs));
bool bit_duplicate = (bool) getParameter("BitDuplicate");
bool is_top_level = getParameter("IsTopLevel").toBool();
ASSERT(number_inputs > 0, "[Error] " + getInstanceName() + " -> Number of inputs must be > 0!");
ASSERT(number_bits > 0, "[Error] " + getInstanceName() + " -> Number of bits must be > 0!");
//Construct electrical ports and nets
//Create each input port
for(unsigned int i = 0; i < number_inputs; ++i)
createInputPort( "In" + (String) i, makeNetIndex(0, number_bits-1));
//Create select signals
for(unsigned int i = 0; i < number_selects; ++i)
{
createInputPort( "Sel" + (String)i);
}
//Create output
createOutputPort( "Out", makeNetIndex(0, number_bits-1));
//Create energy, power, and area results
createElectricalResults();
getEventInfo("Idle")->setStaticTransitionInfos();
createElectricalEventResult("Mux");
//Number of inputs on the 0 side
unsigned int inputs_0 = (unsigned int) ceil((double) number_inputs / 2.0);
unsigned int selects_0 = (unsigned int) ceil(log2((double) inputs_0));
//Number of inputs on the 1 side
unsigned int inputs_1 = (unsigned int) floor((double) number_inputs / 2.0);
unsigned int selects_1 = (unsigned int) ceil(log2((double) inputs_1));
//Depending on whether we want to create a 1-bit instance and have it multiplied
//up by number of bits or actually instantiate number_bits of 1-bit instances.
//Recursively instantiates smaller multiplexers
if (bit_duplicate || number_bits == 1)
{
//If it is just a 1-input multiplexer, just connect output to input and be done
if (number_inputs == 1)
{
assign("Out", "In0");
}
else
{
//If it is more than 1 input, instantiate two sub multiplexers (Mux_way0 and Mux_way1)
//and create a final 2:1 mux (muxf) to select between them
String mux0_name = "Mux_way0";
String mux1_name = "Mux_way1";
String muxf_name = "Mux2_i" + (String)number_inputs;
Multiplexer* mux0 = new Multiplexer(mux0_name, getTechModel());
mux0->setParameter("NumberInputs", inputs_0);
mux0->setParameter("NumberBits", 1);
mux0->setParameter("BitDuplicate", "TRUE");
mux0->setParameter("IsTopLevel", "FALSE");
mux0->construct();
Multiplexer* mux1 = new Multiplexer(mux1_name, getTechModel());
mux1->setParameter("NumberInputs", inputs_1);
mux1->setParameter("NumberBits", 1);
mux1->setParameter("BitDuplicate", "TRUE");
mux1->setParameter("IsTopLevel", "FALSE");
mux1->construct();
StdCell* muxf = getTechModel()->getStdCellLib()->createStdCell("MUX2", muxf_name);
muxf->construct();
// TODO hack
// create selector driver at the top level
if(is_top_level)
{
for(unsigned int i = 0; i < number_selects; ++i)
{
StdCell* selinv0 = getTechModel()->getStdCellLib()->createStdCell("INV", String::format("Sel%dInv0", i));
StdCell* selinv1 = getTechModel()->getStdCellLib()->createStdCell("INV", String::format("Sel%dInv1", i));
selinv0->construct();
selinv1->construct();
addSubInstances(selinv0, 1.0);
addElectricalSubResults(selinv0, 1.0);
addSubInstances(selinv1, 1.0);
addElectricalSubResults(selinv1, 1.0);
getEventResult("Mux")->addSubResult(selinv0->getEventResult("INV"), String::format("Sel%dInv0", i), 1.0);
getEventResult("Mux")->addSubResult(selinv1->getEventResult("INV"), String::format("Sel%dInv1", i), 1.0);
}
}
//Create outputs of way0 and way1 multiplexers with final mux
createNet("way0Out");
createNet("way1Out");
portConnect(mux0, "Out", "way0Out");
portConnect(mux1, "Out", "way1Out");
portConnect(muxf, "A", "way0Out");
portConnect(muxf, "B", "way1Out");
// TODO hack
// Connect selector bits
if(is_top_level)
{
for(unsigned int i = 0; i < number_selects; ++i)
{
ElectricalModel* selinv0 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv0", i));
ElectricalModel* selinv1 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv1", i));
createNet("SelInv" + (String)i);
createNet("SelBuf" + (String)i);
portConnect(selinv0, "A", "Sel" + (String)i);
portConnect(selinv0, "Y", "SelInv" + (String)i);
portConnect(selinv1, "A", "SelInv" + (String)i);
portConnect(selinv1, "Y", "SelBuf" + (String)i);
}
}
//Connect inputs to the sub multiplexers.
//Note that multiple inputs are connected to the mux0 and mux1 input and the
//selector signals are connected multiple times. This is just so that everything
//is loaded appropriately since bit duplication is applied
for (unsigned int n = 0; n < number_bits; ++n)
{
//Connect inputs
for (unsigned int i = 0; i < inputs_0; ++i)
portConnect(mux0, "In" + (String) i, "In" + (String) i, makeNetIndex(n));
for (unsigned int i = 0; i < inputs_1; ++i)
portConnect(mux1, "In" + (String) i, "In" + (String) (i + inputs_0), makeNetIndex(n));
// TODO hack
if(is_top_level)
{
//Connect selector bits
for (unsigned int i = 0; i < selects_0; ++i)
portConnect(mux0, "Sel" + (String)i, "SelBuf" + (String)i);
for (unsigned int i = 0; i < selects_1; ++i)
portConnect(mux1, "Sel" + (String)i, "SelBuf" + (String)i);
portConnect(muxf, "S0", "SelBuf" + (String)(number_selects - 1));
}
else
{
//Connect selector bits
for (unsigned int i = 0; i < selects_0; ++i)
portConnect(mux0, "Sel" + (String)i, "Sel" + (String)i);
for (unsigned int i = 0; i < selects_1; ++i)
portConnect(mux1, "Sel" + (String)i, "Sel" + (String)i);
portConnect(muxf, "S0", "Sel" + (String)(number_selects - 1));
}
}
//Connect final mux to outputs
//Because we use bit duplication and so there is only only one multiplexer
//instance, we must use driver multiplier to drive each output appropriately
if (number_bits == 1)
portConnect(muxf, "Y", "Out");
else
{
createNet("OutTemp");
createDriverMultiplier("OutMult");
ElectricalDriverMultiplier* drive_mult = getDriverMultiplier("OutMult");
portConnect(muxf, "Y", "OutTemp");
getNet("OutTemp")->addDownstreamNode(drive_mult);
for (unsigned int n = 0; n < number_bits; ++n)
drive_mult->addDownstreamNode(getNet("Out", makeNetIndex(n)));
}
//Add area, power, and event results for each mux
addSubInstances(mux0, number_bits);
addElectricalSubResults(mux0, number_bits);
addSubInstances(mux1, number_bits);
addElectricalSubResults(mux1, number_bits);
addSubInstances(muxf, number_bits);
addElectricalSubResults(muxf, number_bits);
getEventResult("Mux")->addSubResult(mux0->getEventResult("Mux"), mux0_name, number_bits);
getEventResult("Mux")->addSubResult(mux1->getEventResult("Mux"), mux1_name, number_bits);
getEventResult("Mux")->addSubResult(muxf->getEventResult("MUX2"), muxf_name, number_bits);
}
}
else
{
//Instantiate a bunch of 1-bit multiplexers
for (unsigned int n = 0; n < number_bits; ++n)
{
String mux_name = "Mux_bit" + (String) n;
Multiplexer* mux = new Multiplexer(mux_name, getTechModel());
mux->setParameter("NumberInputs", number_inputs);
mux->setParameter("NumberBits", 1);
mux->setParameter("BitDuplicate", "TRUE");
mux->construct();
// Connect inputs
for (unsigned int i = 0; i < number_inputs; ++i)
portConnect(mux, "In" + (String) i, "In" + (String) i, makeNetIndex(n));
for(unsigned int i = 0; i < number_selects; ++i)
portConnect(mux, "Sel" + (String)i, "Sel" + (String)i);
portConnect(mux, "Out", "Out", makeNetIndex(n));
//Add area, power, and event results for each mux
addSubInstances(mux, 1.0);
addElectricalSubResults(mux, 1.0);
getEventResult("Mux")->addSubResult(mux->getEventResult("Mux"), mux_name, 1.0);
}
}
return;
}
void Multiplexer::propagateTransitionInfo()
{
// The only thing can be updated are the input probabilities...so we will update them
unsigned int number_bits = (unsigned int) getParameter("NumberBits");
unsigned int number_inputs = (unsigned int) getParameter("NumberInputs");
unsigned int number_selects = (unsigned int) ceil(log2((double) number_inputs));
bool bit_duplicate = (bool) getParameter("BitDuplicate");
bool is_top_level = getParameter("IsTopLevel").toBool();
//Number of inputs on the 0 side
unsigned int inputs_0 = (unsigned int) ceil((double) number_inputs / 2.0);
unsigned int selects_0 = (unsigned int) ceil(log2((double) inputs_0));
//Number of inputs on the 1 side
unsigned int inputs_1 = (unsigned int) floor((double) number_inputs / 2.0);
unsigned int selects_1 = (unsigned int) ceil(log2((double) inputs_1));
if (bit_duplicate || number_bits == 1)
{
if (number_inputs == 1)
{
//If theres only 1 input, output transition = input transition
propagatePortTransitionInfo("Out", "In0");
}
else
{
// Update sub muxes with appropriate probabilities
ElectricalModel* mux0 = (ElectricalModel*)getSubInstance("Mux_way0");
for(unsigned int i = 0; i < inputs_0; ++i)
{
propagatePortTransitionInfo(mux0, "In" + (String)i, "In" + (String)i);
}
for(unsigned int i = 0; i < selects_0; ++i)
{
propagatePortTransitionInfo(mux0, "Sel" + (String)i, "Sel" + (String)i);
}
mux0->use();
ElectricalModel* mux1 = (ElectricalModel*)getSubInstance("Mux_way1");
for(unsigned int i = 0; i < inputs_1; ++i)
{
propagatePortTransitionInfo(mux1, "In" + (String)i, "In" + (String)(i + inputs_0));
}
for(unsigned int i = 0; i < selects_1; ++i)
{
propagatePortTransitionInfo(mux1, "Sel" + (String)i, "Sel" + (String)i);
}
mux1->use();
ElectricalModel* muxf = (ElectricalModel*)getSubInstance("Mux2_i" + (String)number_inputs);
propagatePortTransitionInfo(muxf, "A", mux0, "Out");
propagatePortTransitionInfo(muxf, "B", mux1, "Out");
propagatePortTransitionInfo(muxf, "S0", "Sel" + (String)(number_selects-1));
muxf->use();
// TODO hack
if(is_top_level)
{
for(unsigned int i = 0; i < number_selects; ++i)
{
ElectricalModel* selinv0 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv0", i));
ElectricalModel* selinv1 = (ElectricalModel*)getSubInstance(String::format("Sel%dInv1", i));
propagatePortTransitionInfo(selinv0, "A", "Sel" + (String)i);
selinv0->use();
propagatePortTransitionInfo(selinv1, "A", selinv0, "Y");
selinv1->use();
}
}
// Set output transition
propagatePortTransitionInfo("Out", muxf, "Y");
}
}
else
{
// Go through each bit and set the appropriate probability
for (unsigned int n = 0; n < number_bits; ++n)
{
ElectricalModel* mux_bit = (ElectricalModel*)getSubInstance("Mux_bit" + (String) n);
for(unsigned int i = 0; i < number_inputs; ++i)
{
propagatePortTransitionInfo(mux_bit, "In" + (String)i, "In" + (String)i);
}
for(unsigned int i = 0; i < number_selects; ++i)
{
propagatePortTransitionInfo(mux_bit, "Sel" + (String)i, "Sel" + (String)i);
}
mux_bit->use();
}
// Set output probability to be average that of probabilties of each output bit
ElectricalModel* mux_bit = (ElectricalModel*)getSubInstance("Mux_bit0");
propagatePortTransitionInfo("Out", mux_bit, "Out");
}
return;
}
} // namespace DSENT
|