summaryrefslogtreecommitdiff
path: root/ext/dsent/model/electrical/RippleAdder.cc
blob: 779cd4798b08d5d6076afe282c7749e1a38caaf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "model/electrical/RippleAdder.h"

#include <cmath>

#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCell.h"
#include "model/std_cells/StdCellLib.h"

namespace DSENT
{
    RippleAdder::RippleAdder(const String& instance_name_, const TechModel* tech_model_)
        : ElectricalModel(instance_name_, tech_model_)
    {
        initParameters();
        initProperties();
    }

    RippleAdder::~RippleAdder()
    {}

    void RippleAdder::initParameters()
    {
        addParameterName("NumberBits");
        return;
    }

    void RippleAdder::initProperties()
    {
        return;
    }

    void RippleAdder::constructModel()
    {
        // Get properties
        unsigned int number_bits = (unsigned int) getParameter("NumberBits");

        //Construct electrical ports and nets
        createInputPort("CI");
        createOutputPort("CO");
        for(unsigned int i = 0; i < number_bits; ++i)
        {
            createInputPort("A" + String(i));
            createInputPort("B" + String(i));
            createOutputPort("S" + String(i));
            createNet("C" + String(i));
        }
        createNet("C" + String(number_bits));

        //Create energy, power, and area results
        createElectricalResults();
        getEventInfo("Idle")->setStaticTransitionInfos();
        createElectricalEventResult("Add");
        Result* add_event = getEventResult("Add");

        // Connect all nets 
        assign("C0", "CI");
        assign("CO", "C" + String(number_bits));
        for (unsigned int i = 0; i < number_bits; ++i)
        {
            String n = (String) i;            
            StdCell* adder = getTechModel()->getStdCellLib()->createStdCell("ADDF", "ADDF_" + n);
            adder->construct();

            //Build electrical connectivity
            portConnect(adder, "A", "A" + String(i));
            portConnect(adder, "B", "B" + String(i));
            portConnect(adder, "CI", "C" + String(i));
            portConnect(adder, "S", "S" + String(i));
            portConnect(adder, "CO", "C" + String(i + 1));

            //Add ADDF instance, leakage power, energy, and add event results
            addSubInstances(adder, 1.0);                        
            addElectricalSubResults(adder, 1.0);
            add_event->addSubResult(adder->getEventResult("ADDF"), "ADDF_" + n, 1.0);
        }

        return;
    }

    void RippleAdder::propagateTransitionInfo()
    {
        unsigned int number_bits = getParameter("NumberBits").toUInt();

        TransitionInfo current_trans_CI = getInputPort("CI")->getTransitionInfo();
        for(unsigned int i = 0; i < number_bits; ++i)
        {
            ElectricalModel* adder = (ElectricalModel*)getSubInstance("ADDF_" + String(i));

            // Propagate input transition info
            propagatePortTransitionInfo(adder, "A", "A" + String(i));
            propagatePortTransitionInfo(adder, "B", "B" + String(i));
            assignPortTransitionInfo(adder, "CI", current_trans_CI);
            adder->use();

            // Assign output transition info
            propagatePortTransitionInfo("S" + String(i), adder, "S");
            current_trans_CI = adder->getOutputPort("CO")->getTransitionInfo();
        }
        getOutputPort("CO")->setTransitionInfo(current_trans_CI);
        return;
    }

} // namespace DSENT