summaryrefslogtreecommitdiff
path: root/ext/dsent/model/optical/OpticalLinkBackendTx.cc
blob: 18d86cfe70fccfc245e0da8372d7c47df647bc3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#include "model/optical/OpticalLinkBackendTx.h"

#include "util/Constants.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/electrical/MuxTreeSerializer.h"
#include "model/electrical/BarrelShifter.h"
#include "model/electrical/Multiplexer.h"
#include <cmath>

namespace DSENT
{
    // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch
    // to curve fitting the CICC paper, which uses results from a monte-carlo sim

    OpticalLinkBackendTx::OpticalLinkBackendTx(const String& instance_name_, const TechModel* tech_model_)
        : ElectricalModel(instance_name_, tech_model_)
    {
        initParameters();
        initProperties();
    }

    OpticalLinkBackendTx::~OpticalLinkBackendTx()
    {}

    void OpticalLinkBackendTx::initParameters()
    {
        addParameterName("InBits");
        addParameterName("CoreDataRate");
        addParameterName("LinkDataRate");
        addParameterName("RingTuningMethod");
        addParameterName("BitDuplicate");
        return;
    }

    void OpticalLinkBackendTx::initProperties()
    {
        return;
    }

    void OpticalLinkBackendTx::constructModel()
    {
        unsigned int in_bits = getParameter("InBits");
        double core_data_rate = getParameter("CoreDataRate");
        double link_data_rate = getParameter("LinkDataRate");
        const String& tuning_method = getParameter("RingTuningMethod");;
        bool bit_duplicate = getParameter("BitDuplicate");
        
        // Calculate serialization ratio
        unsigned int serialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate);    
        ASSERT(serialization_ratio == link_data_rate / core_data_rate,
            "[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " +
            "(" + (String) (core_data_rate / link_data_rate) + ")!");
        
        // Calculate output width
        ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio,
            "[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " +
            "must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!");
        unsigned int out_bits = in_bits / serialization_ratio;

        getGenProperties()->set("SerializationRatio", serialization_ratio);
        getGenProperties()->set("OutBits", out_bits);
        
        // Create ports
        createInputPort("In", makeNetIndex(0, in_bits-1));
        createInputPort("LinkCK");
        createOutputPort("Out", makeNetIndex(0, out_bits-1));
                
        //Create energy, power, and area results
        createElectricalResults();
        // Create ring heating power cost
        addNddPowerResult(new AtomicResult("RingTuning"));
        // Create process bits event
        createElectricalEventResult("ProcessBits");
        getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
        // Set conditions during idle state
        getEventInfo("Idle")->setStaticTransitionInfos();
        getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
        
        // Create serializer
        const String& serializer_name = "Serializer";
        MuxTreeSerializer* serializer = new MuxTreeSerializer(serializer_name, getTechModel());
        serializer->setParameter("InBits", in_bits);
        serializer->setParameter("InDataRate", core_data_rate);
        serializer->setParameter("OutDataRate", link_data_rate);
        serializer->setParameter("BitDuplicate", bit_duplicate);
        serializer->construct();
        
        addSubInstances(serializer, 1.0);
        addElectricalSubResults(serializer, 1.0);
        getEventResult("ProcessBits")->addSubResult(serializer->getEventResult("Serialize"), serializer_name, 1.0);
        
        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
        {            
            // If a bit reshuffling backend is present, create the reshuffling backend
            unsigned int reorder_degree = getBitReorderDegree();

            // Create intermediate nets
            createNet("SerializerIn", makeNetIndex(0, in_bits-1));
            createNet("ReorderIn", makeNetIndex(0, out_bits+reorder_degree-1));
            assign("ReorderIn", makeNetIndex(out_bits, out_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1));            
            
            // Create barrelshifter
            unsigned int shift_index_min = (unsigned int)ceil(log2(serialization_ratio));
            unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(in_bits)) - 1);
            
            // Remember some things
            getGenProperties()->set("ReorderDegree", reorder_degree);
            getGenProperties()->set("ShiftIndexMin", shift_index_min);
            getGenProperties()->set("ShiftIndexMax", shift_index_max);
            
            const String& barrel_shift_name = "BarrelShifter";
            BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel());
            barrel_shift->setParameter("NumberBits", in_bits);
            barrel_shift->setParameter("ShiftIndexMax", shift_index_max);
            barrel_shift->setParameter("ShiftIndexMin", shift_index_min);
            barrel_shift->setParameter("BitDuplicate", bit_duplicate);
            barrel_shift->construct();
            
            // Create bit reorder muxes
            const String& reorder_mux_name = "ReorderMux";
            Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel());
            reorder_mux->setParameter("NumberBits", out_bits);
            reorder_mux->setParameter("NumberInputs", reorder_degree);
            reorder_mux->setParameter("BitDuplicate", bit_duplicate);
            reorder_mux->construct();

            // Connect barrelshifter
            // TODO: Connect barrelshift shifts!
            portConnect(barrel_shift, "In", "In");
            portConnect(barrel_shift, "Out", "SerializerIn");
            
            // Connect serializer
            portConnect(serializer, "In", "SerializerIn");
            portConnect(serializer, "Out", "ReorderIn", makeNetIndex(0, out_bits-1));
            portConnect(serializer, "OutCK", "LinkCK");

            // Connect bit reorder muxes
            // TODO: Connect re-order multiplex select signals!
            for (unsigned int i = 0; i < reorder_degree; i++)
                portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+out_bits-1));            
            portConnect(reorder_mux, "Out", "Out");
            
            addSubInstances(barrel_shift, 1.0);
            addSubInstances(reorder_mux, 1.0);
            addElectricalSubResults(barrel_shift, 1.0);
            addElectricalSubResults(reorder_mux, 1.0);
            getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0);
            getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0);      // This happens multiple times
        }
        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
        {
            // If no bit reshuffling backend is present, then just connect serializer up            
            portConnect(serializer, "In", "In");
            portConnect(serializer, "Out", "Out");
            portConnect(serializer, "OutCK", "LinkCK");
        }
        else
        {
            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
        }
        
        return;
    }
    
    void OpticalLinkBackendTx::updateModel()
    {
        // Update everyone
        Model::updateModel();
        // Update ring tuning power
        getNddPowerResult("RingTuning")->setValue(getRingTuningPower());        
        return;
    }
    
    void OpticalLinkBackendTx::propagateTransitionInfo()
    {
        // Get parameters
        const String& tuning_method = getParameter("RingTuningMethod");
        
        // Update the serializer        
        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
        {
            // Get generated properties
            unsigned int reorder_degree = getGenProperties()->get("ReorderDegree").toUInt();
            unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin").toUInt();
            unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax").toUInt();
            
            // Update barrel shifter
            const String& barrel_shift_name = "BarrelShifter";
            ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name);
            propagatePortTransitionInfo(barrel_shift, "In", "In");
            // Set shift transitions to be very low (since it is affected by slow temperature time constants)
            for (unsigned int i = shift_index_min; i <= shift_index_max; ++i)
                barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499));
            barrel_shift->use();
            
            // Set serializer transition info
            ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
            propagatePortTransitionInfo(serializer, "In", barrel_shift, "Out");
            propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
            serializer->use();
            
            // Reorder mux shift select bits
            unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree));

            // Reorder mux probabilities
            const String& reorder_mux_name = "ReorderMux";
            ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name);
            for (unsigned int i = 0; i < reorder_degree; ++i)
                propagatePortTransitionInfo(reorder_mux, "In" + (String) i, serializer, "Out"); 
            // Set select transitions to be 0, since these are statically configured
            for (unsigned int i = 0; i < reorder_sel_bits; ++i)
                reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
            reorder_mux->use();
            
            // Set output transition info
            propagatePortTransitionInfo("Out", reorder_mux, "Out");
        }
        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
        {
            // Set serializer transition info
            ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
            propagatePortTransitionInfo(serializer, "In", "In");
            propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
            serializer->use();

            // Set output transition info
            propagatePortTransitionInfo("Out", serializer, "Out");
        }
                
        return;        
    }

    double OpticalLinkBackendTx::getRingTuningPower()
    {
        // Get properties
        const String& tuning_method = getParameter("RingTuningMethod");;
        unsigned int number_rings = getGenProperties()->get("OutBits");        

        // Get tech model parameters
        double R = getTechModel()->get("Ring->Radius");
        double n_g = getTechModel()->get("Ring->GroupIndex");
        double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency");
        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
        double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency");        
        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
        double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma");
        double T_max = getTechModel()->get("Ring->TemperatureMax");
        double T_min = getTechModel()->get("Ring->TemperatureMin");
        double T = getTechModel()->get("Temperature");
        
        // Get constants
        double c = Constants::c;
        double pi = Constants::pi;
        
        double tuning_power = 0.0;
        
        if (tuning_method == "ThermalWithBitReshuffle")
        {
            // When an electrical backend is present, rings only have to tune to the nearest channel
            // This can be approximated as each ring tuning to something exactly 1 channel away

            // Setup calculations
            double L = 2 * pi * R;                  // Optical length
            double FSR = c / (n_g * L);             // Free spectral range
            double freq_sep = FSR / number_rings;   // Channel separation
            
            // Calculate tuning power
            tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency);
        }
        else if (tuning_method == "ElectricalAssistWithBitReshuffle")
        {
            // Electrical assistance allows for a fraction of the tuning range to be
            // covered electrically. This is most pronounced when the tuning range is small,
            // such is the case when bit reshuffling is applied. The electrically
            // assisted part of it pretty much comes for free...

            // Get electrically tunable range
            double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq");
            
            // Setup calculations
            double L = 2 * pi * R;                  // Optical length
            double FSR = c / (n_g * L);             // Free spectral range
            double freq_sep = FSR / number_rings;   // Channel separation
            double heating_range = std::max(0.0, freq_sep - max_assist);  // The distance needed to bridge using heaters            
            
            // Calculate tuning power, which is really only the power spent on heating since
            // distance tuned electrically is pretty much free
            tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency);            
        }
        else if (tuning_method == "FullThermal")
        {
            // If there is no bit reshuffling backend, each ring must tune to an
            // absolute channel frequency. Since we can only heat rings (and not cool),
            // we can only red-shift (decrease frequency). Thus, a fabrication bias
            // must be applied such that under any process and temperature corner, the
            // ring resonance remains above channel resonance
            // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against
            // the full temperature range
            double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) +
                (T_max - T_min) * tuning_efficiency;
                
            // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as
            double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency;
            
            // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies)
            tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency);
        }
        else if (tuning_method == "AthermalWithTrim")
        {
            // Athermal! Each ring's process variations are trimmed! Everything is free!
            // Basically an ideal scenario
            tuning_power = 0;
        }
        else
        {
            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
        }

        return tuning_power;
    }
    
    unsigned int OpticalLinkBackendTx::getBitReorderDegree()
    {
        // Get properties
        unsigned int number_rings = getGenProperties()->get("OutBits");        

        // Get tech model parameters
        double R = getTechModel()->get("Ring->Radius");
        double n_g = getTechModel()->get("Ring->GroupIndex");
        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
        
        // Get constants
        double c = Constants::c;
        double pi = Constants::pi;
        
        // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend
        // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local
        // Can potentially throw each ring to a channel several channels away. This just calculates
        // the degree of bit reorder muxing needed to realign bits in the correct order

        // Setup calculations
        double L = 2 * pi * R;                  // Optical length
        double FSR = c / (n_g * L);             // Free spectral range
        double freq_sep = FSR / number_rings;   // Channel separation        
        // Using 4 sigmas as the worst re-ordering case (must double to get both sides)
        unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep);
        
        return worst_case_channels;
    }
    
} // namespace DSENT