1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical/OpticalLinkBackendTx.h"
#include "util/Constants.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/electrical/MuxTreeSerializer.h"
#include "model/electrical/BarrelShifter.h"
#include "model/electrical/Multiplexer.h"
#include <cmath>
namespace DSENT
{
// TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch
// to curve fitting the CICC paper, which uses results from a monte-carlo sim
OpticalLinkBackendTx::OpticalLinkBackendTx(const String& instance_name_, const TechModel* tech_model_)
: ElectricalModel(instance_name_, tech_model_)
{
initParameters();
initProperties();
}
OpticalLinkBackendTx::~OpticalLinkBackendTx()
{}
void OpticalLinkBackendTx::initParameters()
{
addParameterName("InBits");
addParameterName("CoreDataRate");
addParameterName("LinkDataRate");
addParameterName("RingTuningMethod");
addParameterName("BitDuplicate");
return;
}
void OpticalLinkBackendTx::initProperties()
{
return;
}
void OpticalLinkBackendTx::constructModel()
{
unsigned int in_bits = getParameter("InBits");
double core_data_rate = getParameter("CoreDataRate");
double link_data_rate = getParameter("LinkDataRate");
const String& tuning_method = getParameter("RingTuningMethod");;
bool bit_duplicate = getParameter("BitDuplicate");
// Calculate serialization ratio
unsigned int serialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate);
ASSERT(serialization_ratio == link_data_rate / core_data_rate,
"[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " +
"(" + (String) (core_data_rate / link_data_rate) + ")!");
// Calculate output width
ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio,
"[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " +
"must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!");
unsigned int out_bits = in_bits / serialization_ratio;
getGenProperties()->set("SerializationRatio", serialization_ratio);
getGenProperties()->set("OutBits", out_bits);
// Create ports
createInputPort("In", makeNetIndex(0, in_bits-1));
createInputPort("LinkCK");
createOutputPort("Out", makeNetIndex(0, out_bits-1));
//Create energy, power, and area results
createElectricalResults();
// Create ring heating power cost
addNddPowerResult(new AtomicResult("RingTuning"));
// Create process bits event
createElectricalEventResult("ProcessBits");
getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
// Set conditions during idle state
getEventInfo("Idle")->setStaticTransitionInfos();
getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
// Create serializer
const String& serializer_name = "Serializer";
MuxTreeSerializer* serializer = new MuxTreeSerializer(serializer_name, getTechModel());
serializer->setParameter("InBits", in_bits);
serializer->setParameter("InDataRate", core_data_rate);
serializer->setParameter("OutDataRate", link_data_rate);
serializer->setParameter("BitDuplicate", bit_duplicate);
serializer->construct();
addSubInstances(serializer, 1.0);
addElectricalSubResults(serializer, 1.0);
getEventResult("ProcessBits")->addSubResult(serializer->getEventResult("Serialize"), serializer_name, 1.0);
if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
{
// If a bit reshuffling backend is present, create the reshuffling backend
unsigned int reorder_degree = getBitReorderDegree();
// Create intermediate nets
createNet("SerializerIn", makeNetIndex(0, in_bits-1));
createNet("ReorderIn", makeNetIndex(0, out_bits+reorder_degree-1));
assign("ReorderIn", makeNetIndex(out_bits, out_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1));
// Create barrelshifter
unsigned int shift_index_min = (unsigned int)ceil(log2(serialization_ratio));
unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(in_bits)) - 1);
// Remember some things
getGenProperties()->set("ReorderDegree", reorder_degree);
getGenProperties()->set("ShiftIndexMin", shift_index_min);
getGenProperties()->set("ShiftIndexMax", shift_index_max);
const String& barrel_shift_name = "BarrelShifter";
BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel());
barrel_shift->setParameter("NumberBits", in_bits);
barrel_shift->setParameter("ShiftIndexMax", shift_index_max);
barrel_shift->setParameter("ShiftIndexMin", shift_index_min);
barrel_shift->setParameter("BitDuplicate", bit_duplicate);
barrel_shift->construct();
// Create bit reorder muxes
const String& reorder_mux_name = "ReorderMux";
Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel());
reorder_mux->setParameter("NumberBits", out_bits);
reorder_mux->setParameter("NumberInputs", reorder_degree);
reorder_mux->setParameter("BitDuplicate", bit_duplicate);
reorder_mux->construct();
// Connect barrelshifter
// TODO: Connect barrelshift shifts!
portConnect(barrel_shift, "In", "In");
portConnect(barrel_shift, "Out", "SerializerIn");
// Connect serializer
portConnect(serializer, "In", "SerializerIn");
portConnect(serializer, "Out", "ReorderIn", makeNetIndex(0, out_bits-1));
portConnect(serializer, "OutCK", "LinkCK");
// Connect bit reorder muxes
// TODO: Connect re-order multiplex select signals!
for (unsigned int i = 0; i < reorder_degree; i++)
portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+out_bits-1));
portConnect(reorder_mux, "Out", "Out");
addSubInstances(barrel_shift, 1.0);
addSubInstances(reorder_mux, 1.0);
addElectricalSubResults(barrel_shift, 1.0);
addElectricalSubResults(reorder_mux, 1.0);
getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0);
getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0); // This happens multiple times
}
else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
{
// If no bit reshuffling backend is present, then just connect serializer up
portConnect(serializer, "In", "In");
portConnect(serializer, "Out", "Out");
portConnect(serializer, "OutCK", "LinkCK");
}
else
{
ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
}
return;
}
void OpticalLinkBackendTx::updateModel()
{
// Update everyone
Model::updateModel();
// Update ring tuning power
getNddPowerResult("RingTuning")->setValue(getRingTuningPower());
return;
}
void OpticalLinkBackendTx::propagateTransitionInfo()
{
// Get parameters
const String& tuning_method = getParameter("RingTuningMethod");
// Update the serializer
if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
{
// Get generated properties
unsigned int reorder_degree = getGenProperties()->get("ReorderDegree").toUInt();
unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin").toUInt();
unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax").toUInt();
// Update barrel shifter
const String& barrel_shift_name = "BarrelShifter";
ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name);
propagatePortTransitionInfo(barrel_shift, "In", "In");
// Set shift transitions to be very low (since it is affected by slow temperature time constants)
for (unsigned int i = shift_index_min; i <= shift_index_max; ++i)
barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499));
barrel_shift->use();
// Set serializer transition info
ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
propagatePortTransitionInfo(serializer, "In", barrel_shift, "Out");
propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
serializer->use();
// Reorder mux shift select bits
unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree));
// Reorder mux probabilities
const String& reorder_mux_name = "ReorderMux";
ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name);
for (unsigned int i = 0; i < reorder_degree; ++i)
propagatePortTransitionInfo(reorder_mux, "In" + (String) i, serializer, "Out");
// Set select transitions to be 0, since these are statically configured
for (unsigned int i = 0; i < reorder_sel_bits; ++i)
reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
reorder_mux->use();
// Set output transition info
propagatePortTransitionInfo("Out", reorder_mux, "Out");
}
else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
{
// Set serializer transition info
ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
propagatePortTransitionInfo(serializer, "In", "In");
propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
serializer->use();
// Set output transition info
propagatePortTransitionInfo("Out", serializer, "Out");
}
return;
}
double OpticalLinkBackendTx::getRingTuningPower()
{
// Get properties
const String& tuning_method = getParameter("RingTuningMethod");;
unsigned int number_rings = getGenProperties()->get("OutBits");
// Get tech model parameters
double R = getTechModel()->get("Ring->Radius");
double n_g = getTechModel()->get("Ring->GroupIndex");
double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency");
// This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency");
double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma");
double T_max = getTechModel()->get("Ring->TemperatureMax");
double T_min = getTechModel()->get("Ring->TemperatureMin");
double T = getTechModel()->get("Temperature");
// Get constants
double c = Constants::c;
double pi = Constants::pi;
double tuning_power = 0.0;
if (tuning_method == "ThermalWithBitReshuffle")
{
// When an electrical backend is present, rings only have to tune to the nearest channel
// This can be approximated as each ring tuning to something exactly 1 channel away
// Setup calculations
double L = 2 * pi * R; // Optical length
double FSR = c / (n_g * L); // Free spectral range
double freq_sep = FSR / number_rings; // Channel separation
// Calculate tuning power
tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency);
}
else if (tuning_method == "ElectricalAssistWithBitReshuffle")
{
// Electrical assistance allows for a fraction of the tuning range to be
// covered electrically. This is most pronounced when the tuning range is small,
// such is the case when bit reshuffling is applied. The electrically
// assisted part of it pretty much comes for free...
// Get electrically tunable range
double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq");
// Setup calculations
double L = 2 * pi * R; // Optical length
double FSR = c / (n_g * L); // Free spectral range
double freq_sep = FSR / number_rings; // Channel separation
double heating_range = std::max(0.0, freq_sep - max_assist); // The distance needed to bridge using heaters
// Calculate tuning power, which is really only the power spent on heating since
// distance tuned electrically is pretty much free
tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency);
}
else if (tuning_method == "FullThermal")
{
// If there is no bit reshuffling backend, each ring must tune to an
// absolute channel frequency. Since we can only heat rings (and not cool),
// we can only red-shift (decrease frequency). Thus, a fabrication bias
// must be applied such that under any process and temperature corner, the
// ring resonance remains above channel resonance
// I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against
// the full temperature range
double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) +
(T_max - T_min) * tuning_efficiency;
// The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as
double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency;
// Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies)
tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency);
}
else if (tuning_method == "AthermalWithTrim")
{
// Athermal! Each ring's process variations are trimmed! Everything is free!
// Basically an ideal scenario
tuning_power = 0;
}
else
{
ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
}
return tuning_power;
}
unsigned int OpticalLinkBackendTx::getBitReorderDegree()
{
// Get properties
unsigned int number_rings = getGenProperties()->get("OutBits");
// Get tech model parameters
double R = getTechModel()->get("Ring->Radius");
double n_g = getTechModel()->get("Ring->GroupIndex");
// This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
// Get constants
double c = Constants::c;
double pi = Constants::pi;
// Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend
// Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local
// Can potentially throw each ring to a channel several channels away. This just calculates
// the degree of bit reorder muxing needed to realign bits in the correct order
// Setup calculations
double L = 2 * pi * R; // Optical length
double FSR = c / (n_g * L); // Free spectral range
double freq_sep = FSR / number_rings; // Channel separation
// Using 4 sigmas as the worst re-ordering case (must double to get both sides)
unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep);
return worst_case_channels;
}
} // namespace DSENT
|