summaryrefslogtreecommitdiff
path: root/ext/dsent/model/optical/RingDetector.cc
blob: 4baf2f68f7a49de1aecc44060954f6e50f326b98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#include "model/optical/RingDetector.h"

#include <cmath>

#include "util/Constants.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCell.h"
#include "model/std_cells/StdCellLib.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical_graph/OpticalDetector.h"
#include "model/optical_graph/OpticalFilter.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalNet.h"

namespace DSENT
{
    // TODOs for this model
    // Add the other receiver topologies from [Georgas, CICC 2011]
    // Split integ_time_ratio = SA integ time ratio
    // Right now perfect clock gating is assumed...may not be what we want
        
    // Constants
    const String RingDetector::INTEGRATINGSENSEAMP = "INTSA";

    RingDetector::RingDetector(const String& instance_name_, const TechModel* tech_model_)
        : OpticalModel(instance_name_, tech_model_), OpticalReceiver()
    {
        initParameters();
        initProperties();
    }

    RingDetector::~RingDetector()
    {}
    
    void RingDetector::initParameters()
    {
        addParameterName("DataRate");
        addParameterName("InStart");
        addParameterName("InEnd");
        addParameterName("DetStart");
        addParameterName("DetEnd");
        addParameterName("DropAll");
        addParameterName("Topology");
        return;
    }

    void RingDetector::initProperties()
    {
        return;
    }
    
    void RingDetector::constructModel()
    {
        // Get parameters
        WavelengthGroup in_wavelengths = makeWavelengthGroup(getParameter("InStart"), getParameter("InEnd"));
        WavelengthGroup det_wavelengths = makeWavelengthGroup(getParameter("DetStart"), getParameter("DetEnd"));
        int number_wavelengths = det_wavelengths.second - det_wavelengths.first + 1;
        bool drop_all = getParameter("DropAll");
        const String& topology = getParameter("Topology");
    
        // Set some generated properties
        getGenProperties()->set("NumberWavelengths", number_wavelengths);
    
        // Create device area result
        addAreaResult(new AtomicResult("Photonic"));
        // Create electrical results
        createElectricalAtomicResults();
        if (topology == INTEGRATINGSENSEAMP) addEventResult(new AtomicResult("Receive"));
        else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
    
        // Create optical ports
        createOpticalInputPort(         "In",   in_wavelengths);
        createOpticalOutputPort(        "Out",  in_wavelengths);
        // Create the filter and modulator
        createFilter(                   "RingFilter",   in_wavelengths, drop_all, det_wavelengths);
        createDetector(                 "RingDetector", det_wavelengths, this);
        OpticalFilter* ring_filter = getFilter("RingFilter");
        OpticalDetector* ring_detector = getDetector("RingDetector");        
        // Connect the filter and modulator
        getWaveguide("In")->addDownstreamNode(ring_filter);
        ring_filter->addDownstreamNode(getWaveguide("Out"));
        ring_filter->setDropPort(ring_detector);
        
        // Create electrical ports
        createOutputPort("Out", makeNetIndex(0, number_wavelengths-1));
        // Create net
        createNet("OutVFO");
        // Create output driver
        createDriver("OutDriver", false);
        // Connect driver
        getDriver("OutDriver")->addDownstreamNode(getNet("OutVFO"));        
        // Connect output
        assignVirtualFanout("Out", "OutVFO");

        // Precompute some technology values
        precomputeTech();
        
        return;
    }
    
    void RingDetector::updateModel()
    {
        // Get some generated properties
        unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");

        // Get tech model numbers
        double ring_area = getTechModel()->get("Ring->Area");
        double thru_loss = getTechModel()->get("Ring->ThroughLoss");
        double drop_loss = getTechModel()->get("Ring->DropLoss");
        double pd_loss = getTechModel()->get("Photodetector->Loss");
        double pd_responsivity = getTechModel()->get("Photodetector->Responsivity");
        
        // Design the receiver
        designReceiver();
        
        // Update losses
        // Connect the filter and modulator
        OpticalFilter* ring_filter = getFilter("RingFilter");
        OpticalDetector* ring_detector = getDetector("RingDetector");        
        ring_filter->setLoss(thru_loss * number_wavelengths);
        ring_filter->setDropLoss(drop_loss + thru_loss * number_wavelengths);
        ring_detector->setLoss(pd_loss);
        ring_detector->setResponsivity(pd_responsivity);
        // Update device area
        getAreaResult("Photonic")->setValue(ring_area * (number_wavelengths));

        return;
    }
    
    void RingDetector::useModel()
    {
        // Get parameters
        const String& topology = getParameter("Topology");

        // Get some generated properties
        unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");

        // Get optical input transition info
        const TransitionInfo& in_trans = getOpticalInputPort("In")->getTransitionInfo();
        
        // Get tech models
        double vdd = getTechModel()->get("Vdd");
        // Get caps
        double unit_gate_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Gate->CapPerWidth").toDouble();
        double unit_drain_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Drain->CapPerWidth").toDouble();
        double inv_x1_gate_cap = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->A");
        double inv_x1_drain_cap = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->Y");
        
        // Construct a simple sense-amp model
        if(topology == INTEGRATINGSENSEAMP)
        {
            // Use ratios from the receiver published in [Georgas, ESSCIRC 2011]
            // Note:
            // The numbers in the paper (43fJ/b, 50 fJ/b in the cited work) is done with the clock buffer (there are 4 receivers),
            // capacitive DAC, and extra output flops used in the physical layout, as the compared receiver is extremely conservative
            // We simplified this model to not have the capacitive DAC, the clock buffer (since this is an individual receiver), or
            // the extra output flops (since receiver structure is already a posedge flop functionally).
            // Look for an upcoming paper [Georgas, JSSC 2012] (when it is published) for the power breakdown pie-chart for the receiver.
            // This model only models the latch (sampler) and the dynamic to static (RS latch) part of the design, which is all you really
            // need in the receiver.
            
            // Gate caps
            double c_gate_sampler = unit_gate_cap * (4 * 2.0 + 2 * 1.0 + 2 * 3.0 + 2 * 5.0) + unit_gate_cap * (2 * 6.0 + 2 * 1.0) + inv_x1_gate_cap;
            double c_gate_rslatch = unit_gate_cap * (4 * 1.0) + inv_x1_gate_cap;
            // Drain caps
            double c_drain_sampler = unit_drain_cap * (2 * 2.0 + 2 * 1.0 + 3 * 5.0 + 1 * 3.0) + inv_x1_drain_cap;
            double c_drain_rslatch = unit_drain_cap * (2 * 6.0) + inv_x1_drain_cap;
            // Sum up cap switched for the sampler
            double c_sampler = c_gate_sampler + c_drain_sampler;
            double c_rslatch = c_gate_rslatch + c_drain_rslatch;
            // Average cap switched 
            // Sampler is differential, one side will always switch (R or S in the latch) regardless of probability
            double avg_cap = c_sampler + c_rslatch * in_trans.getProbability0() * in_trans.getProbability1();

            // Get parameters corresponding to a unit-inverter
            double unit_leak_0 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Leakage->!A");
            double unit_leak_1 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Leakage->A");        
            
            // Approximate leakage (curve fit with design)
            double total_leakage = 0.5 * (unit_leak_0 + unit_leak_1) * 7.43;            

            // Create results
            getEventResult("Receive")->setValue(vdd * vdd * avg_cap * number_wavelengths);
            getNddPowerResult("Leakage")->setValue(total_leakage * number_wavelengths);

        }
        else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");        
        
        return;
    }
    
    void RingDetector::propagateTransitionInfo()
    {
        // Propagate probabilities from optical input to electrical output port
        getOutputPort("Out")->setTransitionInfo(getOpticalInputPort("In")->getTransitionInfo());        
            
        return;        
    }
    
    void RingDetector::precomputeTech()
    {
        // Get parameters
        const double data_rate = getParameter("DataRate");
        const String& topology = getParameter("Topology");

        // Get tech model numbers
        double pd_cap = getTechModel()->get("Photodetector->Cap");
        double parasitic_cap = getTechModel()->get("Photodetector->ParasiticCap");
        double apd = getTechModel()->get("Photodetector->AvalancheGain");
        double vdd = getTechModel()->get("Vdd");

        // Constants shortcuts
        double pi = Constants::pi;
        double k = Constants::k;
        double q = Constants::q;   
        double T = getTechModel()->get("Temperature");
                
        if(topology == INTEGRATINGSENSEAMP)
        {
            // Get more tech parameters
            double integ_time_ratio = getTechModel()->get("Receiver->Int->IntegrationTimeRatio");
            double BER = getTechModel()->get("SenseAmp->BER");
            double CMRR = getTechModel()->get("SenseAmp->CMRR");
            double offset_comp_bits = getTechModel()->get("SenseAmp->OffsetCompensationBits");
            double offset = getTechModel()->get("SenseAmp->OffsetRatio").toDouble() * vdd;
            double supply_noise_rand = getTechModel()->get("SenseAmp->SupplyNoiseRandRatio").toDouble() * vdd;
            double supply_noise_det = getTechModel()->get("SenseAmp->SupplyNoiseDetRatio").toDouble() * vdd;
            double noise_margin = getTechModel()->get("SenseAmp->NoiseMargin");
            double jitter_ratio = getTechModel()->get("SenseAmp->JitterRatio");
            
            // Approximate tao using FO4
            double unit_drain_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Drain->CapPerWidth").toDouble();
            double c_g = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->A");
            double c_d = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->Y");
            double r_o = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->DriveRes->Y");
            // Calculate sense amp tau from sense amp output loading
            double tau = r_o * (c_g + c_d);
            // Set output inverter drive strength
            getDriver("OutDriver")->setOutputRes(r_o);

            // Calculate sense amp input cap based on schematic
            double sense_amp_cap_in = unit_drain_cap * (2.0 + 3.0 + 5.0 + 1.0);

            // Residual offset
            double v_residual = 3 * offset / pow(2, offset_comp_bits);
            // Noise
            double v_noise = supply_noise_rand * supply_noise_rand / (CMRR * CMRR);
            // Sense amp voltage build-up minimum
            double v_sense = vdd * exp(-(1 - integ_time_ratio) / (data_rate * tau)) + noise_margin + v_residual + supply_noise_det / CMRR;
            // Sigmas corresponding to BER
            double sigma = calcInvNormCdf(BER);
            
            //K_int is the time the bit is valid for evaluation

            // Total input cap load
            double input_node_cap = sense_amp_cap_in + pd_cap + parasitic_cap;
            double z_int = integ_time_ratio / (data_rate * input_node_cap); //should use K_int
            
            // Store precalculated values
            m_quad_a_ = 1 - (sigma * sigma * jitter_ratio * jitter_ratio);
            m_quad_b1_ = - 2 * pi / 2 * sigma * sigma * q * 0.7 * data_rate;
            m_quad_b2_ = -2 * v_sense / (z_int * apd);
            m_quad_c_ = 1 / (z_int * z_int) * (v_sense * v_sense - sigma * sigma * (k * T / input_node_cap + v_noise));
        }
        else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");

        return;
    }

    void RingDetector::designReceiver()
    {
        // Get some generated properties
        unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");

        // Get relevant properties/parameters
        const String& topology = getParameter("Topology");
                
        // Construct a simple sense-amp model
        if(topology == INTEGRATINGSENSEAMP)
        {
            // No really good way to estimate the area...can assume each receiver is the size of 40 inverters, which is
            // about the right size for just the sense amp in the layout
            double unit_area_active = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Area->Active");
            double unit_area_metal1 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Area->Metal1Wire");          
            getAreaResult("Active")->setValue(unit_area_active * 40 * number_wavelengths);
            getAreaResult("Metal1Wire")->setValue(unit_area_metal1 * 40 * number_wavelengths);
        }
        else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
        
        return;
    }
    
    double RingDetector::getSensitivity(double ER_dB_) const
    {
        // Get parameters
        const String& topology = getParameter("Topology");
        // Turn extinction ratio into a ratio from dB scale
        double ER = pow(10, ER_dB_ / 10);
                
        // Initialize sensitivity
        double sensitivity = 1e99;
        // Construct a simple sense-amp model
        if(topology == INTEGRATINGSENSEAMP)
        {
            // Scale photodetector shot noise using ER, add rest of noise source
            double b = m_quad_b1_ * (1 + ER) / (2 * (ER - 1)) + m_quad_b2_;            
        
            // Find sensitivity (-b + sqrt(b^2-4ac)) / 2a
            sensitivity = ((-b + sqrt(b * b - 4 * m_quad_a_ * m_quad_c_)) / (2 * m_quad_a_));
        }
        else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");        
        
        return sensitivity;
    }
    
    double RingDetector::calcInvNormCdf(double num_)
    {
        // 53 bit precision for double FP
        unsigned int num_iterations = 20;
        // Upperbound the step
        double step = 20;
        double out = step;                
        // Iteratively guess and check calculation
        for (unsigned int i = 0; i < num_iterations; ++i)
        {
            double current = 0.5 * erfc(out / sqrt(2));
            if (current > num_) out += step;
            else out -= step;            
            step = step * 0.5;
        }
        
        return out;
    }
    
} // namespace DSENT