1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/optical/RingDetector.h"
#include <cmath>
#include "util/Constants.h"
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCell.h"
#include "model/std_cells/StdCellLib.h"
#include "model/optical_graph/OpticalWaveguide.h"
#include "model/optical_graph/OpticalDetector.h"
#include "model/optical_graph/OpticalFilter.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalNet.h"
namespace DSENT
{
// TODOs for this model
// Add the other receiver topologies from [Georgas, CICC 2011]
// Split integ_time_ratio = SA integ time ratio
// Right now perfect clock gating is assumed...may not be what we want
// Constants
const String RingDetector::INTEGRATINGSENSEAMP = "INTSA";
RingDetector::RingDetector(const String& instance_name_, const TechModel* tech_model_)
: OpticalModel(instance_name_, tech_model_), OpticalReceiver()
{
initParameters();
initProperties();
}
RingDetector::~RingDetector()
{}
void RingDetector::initParameters()
{
addParameterName("DataRate");
addParameterName("InStart");
addParameterName("InEnd");
addParameterName("DetStart");
addParameterName("DetEnd");
addParameterName("DropAll");
addParameterName("Topology");
return;
}
void RingDetector::initProperties()
{
return;
}
void RingDetector::constructModel()
{
// Get parameters
WavelengthGroup in_wavelengths = makeWavelengthGroup(getParameter("InStart"), getParameter("InEnd"));
WavelengthGroup det_wavelengths = makeWavelengthGroup(getParameter("DetStart"), getParameter("DetEnd"));
int number_wavelengths = det_wavelengths.second - det_wavelengths.first + 1;
bool drop_all = getParameter("DropAll");
const String& topology = getParameter("Topology");
// Set some generated properties
getGenProperties()->set("NumberWavelengths", number_wavelengths);
// Create device area result
addAreaResult(new AtomicResult("Photonic"));
// Create electrical results
createElectricalAtomicResults();
if (topology == INTEGRATINGSENSEAMP) addEventResult(new AtomicResult("Receive"));
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
// Create optical ports
createOpticalInputPort( "In", in_wavelengths);
createOpticalOutputPort( "Out", in_wavelengths);
// Create the filter and modulator
createFilter( "RingFilter", in_wavelengths, drop_all, det_wavelengths);
createDetector( "RingDetector", det_wavelengths, this);
OpticalFilter* ring_filter = getFilter("RingFilter");
OpticalDetector* ring_detector = getDetector("RingDetector");
// Connect the filter and modulator
getWaveguide("In")->addDownstreamNode(ring_filter);
ring_filter->addDownstreamNode(getWaveguide("Out"));
ring_filter->setDropPort(ring_detector);
// Create electrical ports
createOutputPort("Out", makeNetIndex(0, number_wavelengths-1));
// Create net
createNet("OutVFO");
// Create output driver
createDriver("OutDriver", false);
// Connect driver
getDriver("OutDriver")->addDownstreamNode(getNet("OutVFO"));
// Connect output
assignVirtualFanout("Out", "OutVFO");
// Precompute some technology values
precomputeTech();
return;
}
void RingDetector::updateModel()
{
// Get some generated properties
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
// Get tech model numbers
double ring_area = getTechModel()->get("Ring->Area");
double thru_loss = getTechModel()->get("Ring->ThroughLoss");
double drop_loss = getTechModel()->get("Ring->DropLoss");
double pd_loss = getTechModel()->get("Photodetector->Loss");
double pd_responsivity = getTechModel()->get("Photodetector->Responsivity");
// Design the receiver
designReceiver();
// Update losses
// Connect the filter and modulator
OpticalFilter* ring_filter = getFilter("RingFilter");
OpticalDetector* ring_detector = getDetector("RingDetector");
ring_filter->setLoss(thru_loss * number_wavelengths);
ring_filter->setDropLoss(drop_loss + thru_loss * number_wavelengths);
ring_detector->setLoss(pd_loss);
ring_detector->setResponsivity(pd_responsivity);
// Update device area
getAreaResult("Photonic")->setValue(ring_area * (number_wavelengths));
return;
}
void RingDetector::useModel()
{
// Get parameters
const String& topology = getParameter("Topology");
// Get some generated properties
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
// Get optical input transition info
const TransitionInfo& in_trans = getOpticalInputPort("In")->getTransitionInfo();
// Get tech models
double vdd = getTechModel()->get("Vdd");
// Get caps
double unit_gate_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Gate->CapPerWidth").toDouble();
double unit_drain_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Drain->CapPerWidth").toDouble();
double inv_x1_gate_cap = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->A");
double inv_x1_drain_cap = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->Y");
// Construct a simple sense-amp model
if(topology == INTEGRATINGSENSEAMP)
{
// Use ratios from the receiver published in [Georgas, ESSCIRC 2011]
// Note:
// The numbers in the paper (43fJ/b, 50 fJ/b in the cited work) is done with the clock buffer (there are 4 receivers),
// capacitive DAC, and extra output flops used in the physical layout, as the compared receiver is extremely conservative
// We simplified this model to not have the capacitive DAC, the clock buffer (since this is an individual receiver), or
// the extra output flops (since receiver structure is already a posedge flop functionally).
// Look for an upcoming paper [Georgas, JSSC 2012] (when it is published) for the power breakdown pie-chart for the receiver.
// This model only models the latch (sampler) and the dynamic to static (RS latch) part of the design, which is all you really
// need in the receiver.
// Gate caps
double c_gate_sampler = unit_gate_cap * (4 * 2.0 + 2 * 1.0 + 2 * 3.0 + 2 * 5.0) + unit_gate_cap * (2 * 6.0 + 2 * 1.0) + inv_x1_gate_cap;
double c_gate_rslatch = unit_gate_cap * (4 * 1.0) + inv_x1_gate_cap;
// Drain caps
double c_drain_sampler = unit_drain_cap * (2 * 2.0 + 2 * 1.0 + 3 * 5.0 + 1 * 3.0) + inv_x1_drain_cap;
double c_drain_rslatch = unit_drain_cap * (2 * 6.0) + inv_x1_drain_cap;
// Sum up cap switched for the sampler
double c_sampler = c_gate_sampler + c_drain_sampler;
double c_rslatch = c_gate_rslatch + c_drain_rslatch;
// Average cap switched
// Sampler is differential, one side will always switch (R or S in the latch) regardless of probability
double avg_cap = c_sampler + c_rslatch * in_trans.getProbability0() * in_trans.getProbability1();
// Get parameters corresponding to a unit-inverter
double unit_leak_0 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Leakage->!A");
double unit_leak_1 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Leakage->A");
// Approximate leakage (curve fit with design)
double total_leakage = 0.5 * (unit_leak_0 + unit_leak_1) * 7.43;
// Create results
getEventResult("Receive")->setValue(vdd * vdd * avg_cap * number_wavelengths);
getNddPowerResult("Leakage")->setValue(total_leakage * number_wavelengths);
}
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
return;
}
void RingDetector::propagateTransitionInfo()
{
// Propagate probabilities from optical input to electrical output port
getOutputPort("Out")->setTransitionInfo(getOpticalInputPort("In")->getTransitionInfo());
return;
}
void RingDetector::precomputeTech()
{
// Get parameters
const double data_rate = getParameter("DataRate");
const String& topology = getParameter("Topology");
// Get tech model numbers
double pd_cap = getTechModel()->get("Photodetector->Cap");
double parasitic_cap = getTechModel()->get("Photodetector->ParasiticCap");
double apd = getTechModel()->get("Photodetector->AvalancheGain");
double vdd = getTechModel()->get("Vdd");
// Constants shortcuts
double pi = Constants::pi;
double k = Constants::k;
double q = Constants::q;
double T = getTechModel()->get("Temperature");
if(topology == INTEGRATINGSENSEAMP)
{
// Get more tech parameters
double integ_time_ratio = getTechModel()->get("Receiver->Int->IntegrationTimeRatio");
double BER = getTechModel()->get("SenseAmp->BER");
double CMRR = getTechModel()->get("SenseAmp->CMRR");
double offset_comp_bits = getTechModel()->get("SenseAmp->OffsetCompensationBits");
double offset = getTechModel()->get("SenseAmp->OffsetRatio").toDouble() * vdd;
double supply_noise_rand = getTechModel()->get("SenseAmp->SupplyNoiseRandRatio").toDouble() * vdd;
double supply_noise_det = getTechModel()->get("SenseAmp->SupplyNoiseDetRatio").toDouble() * vdd;
double noise_margin = getTechModel()->get("SenseAmp->NoiseMargin");
double jitter_ratio = getTechModel()->get("SenseAmp->JitterRatio");
// Approximate tao using FO4
double unit_drain_cap = getTechModel()->get("Gate->MinWidth").toDouble() * getTechModel()->get("Drain->CapPerWidth").toDouble();
double c_g = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->A");
double c_d = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Cap->Y");
double r_o = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->DriveRes->Y");
// Calculate sense amp tau from sense amp output loading
double tau = r_o * (c_g + c_d);
// Set output inverter drive strength
getDriver("OutDriver")->setOutputRes(r_o);
// Calculate sense amp input cap based on schematic
double sense_amp_cap_in = unit_drain_cap * (2.0 + 3.0 + 5.0 + 1.0);
// Residual offset
double v_residual = 3 * offset / pow(2, offset_comp_bits);
// Noise
double v_noise = supply_noise_rand * supply_noise_rand / (CMRR * CMRR);
// Sense amp voltage build-up minimum
double v_sense = vdd * exp(-(1 - integ_time_ratio) / (data_rate * tau)) + noise_margin + v_residual + supply_noise_det / CMRR;
// Sigmas corresponding to BER
double sigma = calcInvNormCdf(BER);
//K_int is the time the bit is valid for evaluation
// Total input cap load
double input_node_cap = sense_amp_cap_in + pd_cap + parasitic_cap;
double z_int = integ_time_ratio / (data_rate * input_node_cap); //should use K_int
// Store precalculated values
m_quad_a_ = 1 - (sigma * sigma * jitter_ratio * jitter_ratio);
m_quad_b1_ = - 2 * pi / 2 * sigma * sigma * q * 0.7 * data_rate;
m_quad_b2_ = -2 * v_sense / (z_int * apd);
m_quad_c_ = 1 / (z_int * z_int) * (v_sense * v_sense - sigma * sigma * (k * T / input_node_cap + v_noise));
}
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
return;
}
void RingDetector::designReceiver()
{
// Get some generated properties
unsigned int number_wavelengths = getGenProperties()->get("NumberWavelengths");
// Get relevant properties/parameters
const String& topology = getParameter("Topology");
// Construct a simple sense-amp model
if(topology == INTEGRATINGSENSEAMP)
{
// No really good way to estimate the area...can assume each receiver is the size of 40 inverters, which is
// about the right size for just the sense amp in the layout
double unit_area_active = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Area->Active");
double unit_area_metal1 = getTechModel()->getStdCellLib()->getStdCellCache()->get("INV_X1->Area->Metal1Wire");
getAreaResult("Active")->setValue(unit_area_active * 40 * number_wavelengths);
getAreaResult("Metal1Wire")->setValue(unit_area_metal1 * 40 * number_wavelengths);
}
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
return;
}
double RingDetector::getSensitivity(double ER_dB_) const
{
// Get parameters
const String& topology = getParameter("Topology");
// Turn extinction ratio into a ratio from dB scale
double ER = pow(10, ER_dB_ / 10);
// Initialize sensitivity
double sensitivity = 1e99;
// Construct a simple sense-amp model
if(topology == INTEGRATINGSENSEAMP)
{
// Scale photodetector shot noise using ER, add rest of noise source
double b = m_quad_b1_ * (1 + ER) / (2 * (ER - 1)) + m_quad_b2_;
// Find sensitivity (-b + sqrt(b^2-4ac)) / 2a
sensitivity = ((-b + sqrt(b * b - 4 * m_quad_a_ * m_quad_c_)) / (2 * m_quad_a_));
}
else ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown receiver topology (" + topology + ")!");
return sensitivity;
}
double RingDetector::calcInvNormCdf(double num_)
{
// 53 bit precision for double FP
unsigned int num_iterations = 20;
// Upperbound the step
double step = 20;
double out = step;
// Iteratively guess and check calculation
for (unsigned int i = 0; i < num_iterations; ++i)
{
double current = 0.5 * erfc(out / sqrt(2));
if (current > num_) out += step;
else out -= step;
step = step * 0.5;
}
return out;
}
} // namespace DSENT
|