summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/BUF.cc
blob: 61c7dac4be5db2c6337f119fe81fc7ab06620bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include "model/std_cells/BUF.h"

#include <cmath>

#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"

namespace DSENT
{
    using std::max;

    BUF::BUF(const String& instance_name_, const TechModel* tech_model_)
        : StdCell(instance_name_, tech_model_)
    {
        initProperties();
    }

    BUF::~BUF()
    {}

    void BUF::initProperties()
    {
        return;
    }

    void BUF::constructModel()
    {
        createInputPort("A");
        createOutputPort("Y");

        createLoad("A_Cap");
        createDelay("A_to_Y_delay");
        createDriver("Y_Ron", true);

        ElectricalLoad* a_cap = getLoad("A_Cap");
        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
        ElectricalDriver* y_ron = getDriver("Y_Ron");
        
        getNet("A")->addDownstreamNode(a_cap);
        a_cap->addDownstreamNode(a_to_y_delay);      
        a_to_y_delay->addDownstreamNode(y_ron);
        y_ron->addDownstreamNode(getNet("Y"));     
        
        // Create Area result
        // Create NDD Power result
        createElectricalAtomicResults();
        // Create OR Event Energy Result
        createElectricalEventAtomicResult("BUF");

        getEventInfo("Idle")->setStaticTransitionInfos();
        
        return;
    }

    void BUF::updateModel()
    {
        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        const String& cell_name = "BUF_X" + (String) drive_strength;

        // Get timing parameters
        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));      
        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));      
        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));

        // Set the cell area
        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
        
        return;
    }

    void BUF::evaluateModel()
    {
        return;
    }

    void BUF::useModel()
    {
        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Stadard cell cache string
        const String& cell_name = "BUF_X" + (String) drive_strength;

        // Propagate the transition info and get the 0->1 transtion count
        propagateTransitionInfo();
        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();

        // Calculate leakage
        double leakage = 0;
        leakage += cache->get(cell_name + "->Leakage->!A") * (1 - P_A);
        leakage += cache->get(cell_name + "->Leakage->A") * P_A;
        getNddPowerResult("Leakage")->setValue(leakage);

        // Get VDD
        double vdd = getTechModel()->get("Vdd");

        // Get capacitances
        double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
        double y_cap = cache->get(cell_name + "->Cap->Y");
        double y_load_cap = getNet("Y")->getTotalDownstreamCap();                
        
        // Calculate BUFEvent energy
        double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
        getEventResult("BUF")->setValue(energy_per_trans_01 * Y_num_trans_01);
                
        return;
    }

    void BUF::propagateTransitionInfo()
    {
        // Get input signal transition info
        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
        
        getOutputPort("Y")->setTransitionInfo(trans_A);
        return;
    }

    // Creates the standard cell, characterizes and abstracts away the details
    void BUF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
    {
        // Get parameters
        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
        Map<double>* cache = cell_lib_->getStdCellCache();

        // Stadard cell cache string
        const String& cell_name = "BUF_X" + (String) drive_strength_;

        Log::printLine("=== " + cell_name + " ===");

        // Now actually build the full standard cell model
        createInputPort("A");
        createOutputPort("Y");

        createNet("Y_b");

        // Adds macros
        CellMacros::addInverter(this, "INV0", false, true, "A", "Y_b");
        CellMacros::addInverter(this, "INV1", false, true, "Y_b", "Y");

        // Update macros
        CellMacros::updateInverter(this, "INV0", drive_strength_ * 0.367);
        CellMacros::updateInverter(this, "INV1", drive_strength_ * 1.0);

        // Cache area result
        double area = 0.0;
        area += gate_pitch * getTotalHeight() * 1;
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV0_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
        cache->set(cell_name + "->ActiveArea", area);
        Log::printLine(cell_name + "->ActiveArea=" + (String)area);
        
        // --------------------------------------------------------------------
        // Leakage Model Calculation
        // --------------------------------------------------------------------
        // Cache leakage power results (for every single signal combination)
        double leakage_0 = 0.0; // !A
        double leakage_1 = 0.0; // A

        leakage_0 += getGenProperties()->get("INV0_LeakagePower_0").toDouble();
        leakage_0 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();

        leakage_1 += getGenProperties()->get("INV0_LeakagePower_1").toDouble();
        leakage_1 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();

        cache->set(cell_name + "->Leakage->!A", leakage_0);
        cache->set(cell_name + "->Leakage->A", leakage_1);
        Log::printLine(cell_name + "->Leakage->!A=" + (String) leakage_0);
        Log::printLine(cell_name + "->Leakage->A=" + (String) leakage_1);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Get Node Capacitances
        // --------------------------------------------------------------------
        double a_cap = getNet("A")->getTotalDownstreamCap();
        double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
        double y_cap = getNet("Y")->getTotalDownstreamCap();

        cache->set(cell_name + "->Cap->A", a_cap);
        cache->set(cell_name + "->Cap->Y_b", y_b_cap);
        cache->set(cell_name + "->Cap->Y", y_cap);
        Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
        Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
        Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Build Internal Delay Model
        // --------------------------------------------------------------------
        double y_ron = getDriver("INV1_RonZN")->getOutputRes();
        double a_to_y_delay = getDriver("INV0_RonZN")->calculateDelay() + 
                              getDriver("INV1_RonZN")->calculateDelay();

        cache->set(cell_name + "->DriveRes->Y", y_ron);
        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
        // --------------------------------------------------------------------

        return;
    }
} // namespace DSENT