summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/LATQ.cc
blob: b2548d07b3cd5ae46b8611f65d7c51a446601e5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include "model/std_cells/LATQ.h"

#include <cmath>

#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"

namespace DSENT
{
    using std::ceil;
    using std::max;
    using std::min;

    LATQ::LATQ(const String& instance_name_, const TechModel* tech_model_)
        : StdCell(instance_name_, tech_model_)
    {
        initProperties();
    }

    LATQ::~LATQ()
    {}

    void LATQ::initProperties()
    {
        return;
    }

    void LATQ::constructModel()
    {
        // All constructModel should do is create Area/NDDPower/Energy Results as
        // well as instantiate any sub-instances using only the hard parameters
        
        createInputPort("D");
        createInputPort("G");
        createOutputPort("Q");
        
        createLoad("D_Cap");
        createLoad("G_Cap");
        createDelay("D_to_Q_delay");
        createDelay("G_to_Q_delay");
        createDriver("Q_Ron", true);

        ElectricalLoad* d_cap = getLoad("D_Cap");
        ElectricalLoad* g_cap = getLoad("G_Cap");
        ElectricalDelay* d_to_q_delay = getDelay("D_to_Q_delay");
        ElectricalDelay* g_to_q_delay = getDelay("G_to_Q_delay");
        ElectricalDriver* q_ron = getDriver("Q_Ron");
        
        getNet("D")->addDownstreamNode(d_cap);
        getNet("G")->addDownstreamNode(g_cap);
        d_cap->addDownstreamNode(d_to_q_delay);        
        g_cap->addDownstreamNode(g_to_q_delay);
        g_to_q_delay->addDownstreamNode(q_ron);
        q_ron->addDownstreamNode(getNet("Q"));
        
        // Create Area result
        // Create NDD Power result
        createElectricalAtomicResults();
        // Create G Event Energy Result
        createElectricalEventAtomicResult("G");
        // Create DFF Event Energy Result
        createElectricalEventAtomicResult("LATD");
        createElectricalEventAtomicResult("LATQ");
        // Create Idle event for leakage
        // G pin is assumed to be on all the time
        //createElectricalEventAtomicResult("Idle");
        getEventInfo("Idle")->setStaticTransitionInfos();
        return;
    }
    
    void LATQ::updateModel()
    {
        // Get parameters        
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        String cell_name = "LATQ_X" + (String) drive_strength;
        
        // Get timing parameters
        getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D"));
        getLoad("G_Cap")->setLoadCap(cache->get(cell_name + "->Cap->G"));
        getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q"));
        getDelay("G_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->G_to_Q"));
        getDelay("D_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->D_to_Q"));
        
        // Set the cell area
        getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
        
        return;
    }
    
    void LATQ::evaluateModel()
    {
        return;
    }

    void LATQ::useModel()
    {
        // Get parameters        
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        String cell_name = "LATQ_X" + (String) drive_strength;

        // Propagate the transition info and get P_D, P_M, and P_Q
        propagateTransitionInfo();
        double P_D = getInputPort("D")->getTransitionInfo().getProbability1();
        double P_G = getInputPort("G")->getTransitionInfo().getProbability1();
        double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1();
        double G_num_trans_01 = getInputPort("G")->getTransitionInfo().getNumberTransitions01();
        double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01();
        double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01();        
        
        // Calculate leakage
        double leakage = 0;
        leakage += cache->get(cell_name + "->Leakage->!D!G!Q") * (1 - P_D) * (1 - P_G) * (1 - P_Q);
        leakage += cache->get(cell_name + "->Leakage->!D!GQ") * (1 - P_D) * (1 - P_G) * P_Q;
        leakage += cache->get(cell_name + "->Leakage->!DG!Q") * (1 - P_D) * P_G * (1 - P_Q);
        leakage += cache->get(cell_name + "->Leakage->D!G!Q") * P_D * (1 - P_G) * (1 - P_Q);
        leakage += cache->get(cell_name + "->Leakage->D!GQ") * P_D * (1 - P_G) * P_Q;
        leakage += cache->get(cell_name + "->Leakage->DGQ") * P_D * P_G * P_Q;
        getNddPowerResult("Leakage")->setValue(leakage);
        
        // Get VDD
        double vdd = getTechModel()->get("Vdd");

        // Get capacitances
        double g_b_cap = cache->get(cell_name + "->Cap->G_b");
        double d_b_cap = cache->get(cell_name + "->Cap->D_b");
        double q_i_cap = cache->get(cell_name + "->Cap->Q_i");
        double q_b_cap = cache->get(cell_name + "->Cap->Q_b");
        double q_cap = cache->get(cell_name + "->Cap->Q");
        double q_load_cap = getNet("Q")->getTotalDownstreamCap();

        // Calculate G Event energy
        double g_event_energy = 0.0;
        g_event_energy += (g_b_cap) * G_num_trans_01;
        g_event_energy *= vdd * vdd;
        getEventResult("G")->setValue(g_event_energy);
        // Calculate LATD Event energy
        double latd_event_energy = 0.0;
        latd_event_energy += (d_b_cap) * D_num_trans_01;
        latd_event_energy *= vdd * vdd;
        getEventResult("LATD")->setValue(latd_event_energy);
        // Calculate LATQ Event energy
        double latq_event_energy = 0.0;
        latq_event_energy += (q_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01;
        latq_event_energy *= vdd * vdd;
        getEventResult("LATQ")->setValue(latq_event_energy);
        
        return;
    }
    
    void LATQ::propagateTransitionInfo()
    {
        const TransitionInfo& trans_G = getInputPort("G")->getTransitionInfo();
        const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo();

        double G_num_trans_01 = trans_G.getNumberTransitions01();
        double G_num_trans_10 = G_num_trans_01;
        double G_num_trans_00 = trans_G.getNumberTransitions00();
        double D_freq_mult = trans_D.getFrequencyMultiplier();
        
        // If the latch is sampling just as fast or faster than input data signal
        // Then it can capture all transitions (though it should be normalized to clock)
        if((G_num_trans_10 + G_num_trans_00) >= D_freq_mult)
        {
            const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(G_num_trans_10 + G_num_trans_00);
            getOutputPort("Q")->setTransitionInfo(trans_Q); 
        }
        // If the latch is sampling slower than the input data signal, then input
        // will look like they transition more
        else
        {
            // Calculate scale ratio
            double scale_ratio = (G_num_trans_10 + G_num_trans_00) / D_freq_mult;
            // 00 and 11 transitions become fewer
            double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11());
            double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio;
            double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio;
            // 01 and 10 transitions become more frequent
            double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff;
        
            // Create final transition info, remembering to apply scaling ratio to normalize to G
            const TransitionInfo trans_Q(   D_scaled_num_trans_00 * scale_ratio,
                                            D_scaled_num_trans_10 * scale_ratio,
                                            D_scaled_num_trans_11 * scale_ratio);
            getOutputPort("Q")->setTransitionInfo(trans_Q);
        }

        return;
    }    
    
    // Creates the standard cell, characterizes and abstracts away the details
    void LATQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
    {
        // Get parameters        
        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
        Map<double>* cache = cell_lib_->getStdCellCache();

        // Standard cell cache string
        String cell_name = "LATQ_X" + (String) drive_strength_;

        Log::printLine("=== " + cell_name + " ===");

        
        // Now actually build the full standard cell model
        createInputPort("D");
        createInputPort("G");
        createOutputPort("Q");
        
        createNet("D_b");
        createNet("Q_i");
        createNet("Q_b");
        createNet("G_b");
        
        // Adds macros
        CellMacros::addInverter(this, "INV1", false, true, "D", "D_b");
        CellMacros::addInverter(this, "INV2", false, true, "Q_i", "Q_b");
        CellMacros::addInverter(this, "INV3", false, true, "Q_b", "Q");
        CellMacros::addInverter(this, "INV4", false, true, "G", "G_b");
        CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "G", "G_b", "Q_i");        //trace timing through A->ZN path only
        CellMacros::addTristate(this, "INVZ2", false, false, false, false, "Q_b", "G_b", "G", "Q_i");       //don't trace timing through the feedback path

        // Update macros
        CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125);
        CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5);
        CellMacros::updateInverter(this, "INV3", drive_strength_ * 1.0);
        CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.125);
        CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5);
        CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625);
                
        // Cache area result
        double area = 0.0;
        area += gate_pitch * getTotalHeight() * 1;
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
        cache->set(cell_name + "->Area->Active", area);
        cache->set(cell_name + "->Area->Metal1Wire", area);     //Cover-block m1 area
        Log::printLine(cell_name + "->Area->Active=" + (String) area);
        Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);

        // --------------------------------------------------------------------
        // Leakage Model Calculation
        // --------------------------------------------------------------------
        // Cache leakage power results (for every single signal combination)
        double leakage_000 = 0;         //!D, !G, !Q
        double leakage_001 = 0;         //!D, !G, Q
        double leakage_010 = 0;         //!D, G, !Q
        double leakage_100 = 0;         //D, !G, !Q
        double leakage_101 = 0;         //D, !G, Q
        double leakage_111 = 0;         //D, G, Q

        //This is so painful...
        leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
        leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
        leakage_000 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
        leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
        leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
        leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();

        leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
        leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
        leakage_001 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
        leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
        leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
        leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();

        leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
        leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
        leakage_010 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
        leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
        leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
        leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();

        leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
        leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
        leakage_100 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
        leakage_100 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
        leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
        leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
        
        leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
        leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
        leakage_101 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
        leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
        leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
        leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();

        leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
        leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
        leakage_111 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
        leakage_111 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
        leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
        leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
        
        cache->set(cell_name + "->Leakage->!D!G!Q", leakage_000);
        cache->set(cell_name + "->Leakage->!D!GQ", leakage_001);
        cache->set(cell_name + "->Leakage->!DG!Q", leakage_010);
        cache->set(cell_name + "->Leakage->D!G!Q", leakage_100);
        cache->set(cell_name + "->Leakage->D!GQ", leakage_101);
        cache->set(cell_name + "->Leakage->DGQ", leakage_111);
        Log::printLine(cell_name + "->Leakage->!D!G!Q=" + (String) leakage_000);
        Log::printLine(cell_name + "->Leakage->!D!GQ=" + (String) leakage_001);
        Log::printLine(cell_name + "->Leakage->!DG!Q=" + (String) leakage_010);
        Log::printLine(cell_name + "->Leakage->D!G!Q=" + (String) leakage_100);
        Log::printLine(cell_name + "->Leakage->D!GQ=" + (String) leakage_101);
        Log::printLine(cell_name + "->Leakage->DGQ=" + (String) leakage_111);
        // --------------------------------------------------------------------
        
        // --------------------------------------------------------------------
        // Get Node Capacitances
        // --------------------------------------------------------------------
        double d_cap = getNet("D")->getTotalDownstreamCap();
        double d_b_cap = getNet("D_b")->getTotalDownstreamCap();
        double q_i_cap = getNet("Q_i")->getTotalDownstreamCap();
        double q_b_cap = getNet("Q_b")->getTotalDownstreamCap();
        double q_cap = getNet("Q")->getTotalDownstreamCap();
        double g_cap = getNet("G")->getTotalDownstreamCap();
        double g_b_cap = getNet("G_b")->getTotalDownstreamCap();

        cache->set(cell_name + "->Cap->D", d_cap);
        cache->set(cell_name + "->Cap->D_b", d_b_cap);
        cache->set(cell_name + "->Cap->Q_i", q_i_cap);
        cache->set(cell_name + "->Cap->Q_b", q_b_cap);
        cache->set(cell_name + "->Cap->Q", q_cap);
        cache->set(cell_name + "->Cap->G", g_cap);
        cache->set(cell_name + "->Cap->G_b", g_b_cap);
        
        Log::printLine(cell_name + "->Cap->D=" + (String) d_cap);
        Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap);        
        Log::printLine(cell_name + "->Cap->Q_i=" + (String) q_i_cap);
        Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap);        
        Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap);
        Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);        
        Log::printLine(cell_name + "->Cap->G_b=" + (String) g_b_cap);        
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Build Internal Delay Model
        // --------------------------------------------------------------------
        double q_ron = getDriver("INV3_RonZN")->getOutputRes();

        double d_to_q_delay = getDriver("INV1_RonZN")->calculateDelay() + 
                                getDriver("INVZ1_RonZN")->calculateDelay() +
                                getDriver("INV2_RonZN")->calculateDelay() + 
                                getDriver("INV3_RonZN")->calculateDelay();
        double g_to_q_delay = getDriver("INV4_RonZN")->calculateDelay() +
                                getDriver("INVZ1_RonZN")->calculateDelay() +
                                getDriver("INV2_RonZN")->calculateDelay() +
                                getDriver("INV3_RonZN")->calculateDelay();        

        cache->set(cell_name + "->DriveRes->Q", q_ron);        
        cache->set(cell_name + "->Delay->D_to_Q", d_to_q_delay);
        cache->set(cell_name + "->Delay->G_to_Q", g_to_q_delay);
        Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron);        
        Log::printLine(cell_name + "->Delay->D_to_Q=" + (String) d_to_q_delay);
        Log::printLine(cell_name + "->Delay->G_to_Q=" + (String) g_to_q_delay);                

        return;
        // --------------------------------------------------------------------

    }    
    
} // namespace DSENT