1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/MUX2.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::ceil;
using std::max;
MUX2::MUX2(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
MUX2::~MUX2()
{}
void MUX2::initProperties()
{
return;
}
void MUX2::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("A");
createInputPort("B");
createInputPort("S0");
createOutputPort("Y");
createLoad("A_Cap");
createLoad("B_Cap");
createLoad("S0_Cap");
createDelay("A_to_Y_delay");
createDelay("B_to_Y_delay");
createDelay("S0_to_Y_delay");
createDriver("Y_Ron", true);
ElectricalLoad* a_cap = getLoad("A_Cap");
ElectricalLoad* b_cap = getLoad("B_Cap");
ElectricalLoad* s0_cap = getLoad("S0_Cap");
ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
ElectricalDelay* s0_to_y_delay = getDelay("S0_to_Y_delay");
ElectricalDriver* y_ron = getDriver("Y_Ron");
getNet("A")->addDownstreamNode(a_cap);
getNet("B")->addDownstreamNode(b_cap);
getNet("S0")->addDownstreamNode(s0_cap);
a_cap->addDownstreamNode(a_to_y_delay);
b_cap->addDownstreamNode(b_to_y_delay);
s0_cap->addDownstreamNode(s0_to_y_delay);
a_to_y_delay->addDownstreamNode(y_ron);
b_to_y_delay->addDownstreamNode(y_ron);
s0_to_y_delay->addDownstreamNode(y_ron);
y_ron->addDownstreamNode(getNet("Y"));
// Create Area result
createElectricalAtomicResults();
getEventInfo("Idle")->setStaticTransitionInfos();
// Create MUX2 Event Energy Result
createElectricalEventAtomicResult("MUX2");
return;
}
void MUX2::updateModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "MUX2_X" + (String) drive_strength;
// Get timing parameters
getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
getLoad("S0_Cap")->setLoadCap(cache->get(cell_name + "->Cap->S0"));
getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
getDelay("S0_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->S0_to_Y"));
getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
return;
}
void MUX2::evaluateModel()
{
return;
}
void MUX2::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "MUX2_X" + (String) drive_strength;
// Propagate the transition and get the 0->1 transition count
propagateTransitionInfo();
double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
double P_S0 = getInputPort("S0")->getTransitionInfo().getProbability1();
double S0_num_trans_01 = getInputPort("S0")->getTransitionInfo().getNumberTransitions01();
double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!A!B!S0") * (1 - P_A) * (1 - P_B) * (1 - P_S0);
leakage += cache->get(cell_name + "->Leakage->!A!BS0") * (1 - P_A) * (1 - P_B) * P_S0;
leakage += cache->get(cell_name + "->Leakage->!AB!S0") * (1 - P_A) * P_B * (1 - P_S0);
leakage += cache->get(cell_name + "->Leakage->!ABS0") * (1 - P_A) * P_B * P_S0;
leakage += cache->get(cell_name + "->Leakage->A!B!S0") * P_A * (1 - P_B) * (1 - P_S0);
leakage += cache->get(cell_name + "->Leakage->A!BS0") * P_A * (1 - P_B) * P_S0;
leakage += cache->get(cell_name + "->Leakage->AB!S0") * P_A * P_B * (1 - P_S0);
leakage += cache->get(cell_name + "->Leakage->ABS0") * P_A * P_B * P_S0;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double s0_b_cap = cache->get(cell_name + "->Cap->S0_b");
double y_bar_cap = cache->get(cell_name + "->Cap->Y_b");
double y_cap = cache->get(cell_name + "->Cap->Y");
double y_load_cap = getNet("Y")->getTotalDownstreamCap();
// Create mux2 event energy
double mux2_event_energy = 0.0;
mux2_event_energy += (s0_b_cap) * S0_num_trans_01;
mux2_event_energy += (y_bar_cap + y_cap + y_load_cap) * Y_num_trans_01;
mux2_event_energy *= vdd * vdd;
getEventResult("MUX2")->setValue(mux2_event_energy);
return;
}
void MUX2::propagateTransitionInfo()
{
// Get input signal transition info
const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
const TransitionInfo& trans_S0 = getInputPort("S0")->getTransitionInfo();
// Scale all transition information to the highest freq multiplier
double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_S0.getFrequencyMultiplier());
const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_S0 = trans_S0.scaleFrequencyMultiplier(max_freq_mult);
// Compute the probability of each transition on a given cycle
double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
double A_prob_10 = A_prob_01;
double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
double B_prob_10 = B_prob_01;
double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
double S0_prob_00 = scaled_trans_S0.getNumberTransitions00() / max_freq_mult;
double S0_prob_01 = scaled_trans_S0.getNumberTransitions01() / max_freq_mult;
double S0_prob_10 = S0_prob_01;
double S0_prob_11 = scaled_trans_S0.getNumberTransitions11() / max_freq_mult;
// Compute output probabilities
double Y_prob_00 = S0_prob_00 * A_prob_00 +
S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_00 + B_prob_10) +
S0_prob_10 * (A_prob_00 + A_prob_10) * (B_prob_00 + B_prob_01) +
S0_prob_11 * B_prob_00;
double Y_prob_01 = S0_prob_00 * A_prob_01 +
S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_01 + B_prob_11) +
S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_00 + B_prob_01) +
S0_prob_11 * B_prob_01;
double Y_prob_11 = S0_prob_00 * A_prob_11 +
S0_prob_01 * (A_prob_10 + A_prob_11) * (B_prob_01 + B_prob_11) +
S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_10 + B_prob_11) +
S0_prob_11 * B_prob_11;
// Check that probabilities add up to 1.0 with some finite tolerance
ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
"[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" +
(String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
// Turn probability of transitions per cycle into number of transitions per time unit
TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
getOutputPort("Y")->setTransitionInfo(trans_Y);
return;
}
// Creates the standard cell, characterizes and abstracts away the details
void MUX2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Standard cell cache string
String cell_name = "MUX2_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Now actually build the full standard cell model
createInputPort("A");
createInputPort("B");
createInputPort("S0");
createOutputPort("Y");
createNet("S0_b");
createNet("Y_b");
// Adds macros
CellMacros::addInverter(this, "INV1", false, true, "S0", "S0_b");
CellMacros::addInverter(this, "INV2", false, true, "Y_b", "Y");
CellMacros::addTristate(this, "INVZ1", true, true, true, true, "A", "S0_b", "S0", "Y_b");
CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B", "S0", "S0_b", "Y_b");
// I have no idea how to size each of the parts haha
CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
CellMacros::updateInverter(this, "INV2", drive_strength_ * 1.000);
CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.500);
CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.500);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
cache->set(cell_name + "->ActiveArea", area);
Log::printLine(cell_name + "->ActiveArea=" + (String) area);
// --------------------------------------------------------------------
// Cache Leakage Power (for every single signal combination)
// --------------------------------------------------------------------
double leakage_000 = 0; //!A, !B, !S0
double leakage_001 = 0; //!A, !B, S0
double leakage_010 = 0; //!A, B, !S0
double leakage_011 = 0; //!A, B, S0
double leakage_100 = 0; //A, !B, !S0
double leakage_101 = 0; //A, !B, S0
double leakage_110 = 0; //A, B, !S0
double leakage_111 = 0; //A, B, S0
//This is so painful...
leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_000 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
leakage_001 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_001 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
leakage_011 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_011 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
leakage_100 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
cache->set(cell_name + "->Leakage->!A!B!S0", leakage_000);
cache->set(cell_name + "->Leakage->!A!BS0", leakage_001);
cache->set(cell_name + "->Leakage->!AB!S0", leakage_010);
cache->set(cell_name + "->Leakage->!ABS0", leakage_011);
cache->set(cell_name + "->Leakage->A!B!S0", leakage_100);
cache->set(cell_name + "->Leakage->A!BS0", leakage_101);
cache->set(cell_name + "->Leakage->AB!S0", leakage_110);
cache->set(cell_name + "->Leakage->ABS0", leakage_111);
Log::printLine(cell_name + "->Leakage->!A!B!S0=" + (String) leakage_000);
Log::printLine(cell_name + "->Leakage->!A!BS0=" + (String) leakage_001);
Log::printLine(cell_name + "->Leakage->!AB!S0=" + (String) leakage_010);
Log::printLine(cell_name + "->Leakage->!ABS0=" + (String) leakage_011);
Log::printLine(cell_name + "->Leakage->A!B!S0=" + (String) leakage_100);
Log::printLine(cell_name + "->Leakage->A!BS0=" + (String) leakage_101);
Log::printLine(cell_name + "->Leakage->AB!S0=" + (String) leakage_110);
Log::printLine(cell_name + "->Leakage->ABS0=" + (String) leakage_111);
// Cache event energy results
/*
double event_a_flip = 0.0;
event_a_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
cache->set(cell_name + "->Event_A_Flip", event_a_flip);
Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
double event_b_flip = 0.0;
event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
cache->set(cell_name + "->Event_B_Flip", event_b_flip);
Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
double event_s0_flip = 0.0;
event_s0_flip += getGenProperties()->get("INV1_A_Flip").toDouble();
event_s0_flip += getGenProperties()->get("INV1_ZN_Flip").toDouble();
event_s0_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
event_s0_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
cache->set(cell_name + "->Event_S0_Flip", event_s0_flip);
Log::printLine(cell_name + "->Event_S0_Flip=" + (String) event_s0_flip);
double event_y_flip = 0.0;
event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
event_y_flip += getGenProperties()->get("INV2_A_Flip").toDouble();
event_y_flip += getGenProperties()->get("INV2_ZN_Flip").toDouble();
cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
double a_cap = getLoad("INVZ1_CgA")->getLoadCap();
double b_cap = getLoad("INVZ2_CgA")->getLoadCap();
double s0_cap = getLoad("INV1_CgA")->getLoadCap() + getLoad("INVZ1_CgOEN")->getLoadCap() + getLoad("INVZ2_CgOE")->getLoadCap();
double y_ron = getDriver("INV2_RonZN")->getOutputRes();
*/
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Get Node capacitances
// --------------------------------------------------------------------
double a_cap = getNet("A")->getTotalDownstreamCap();
double b_cap = getNet("B")->getTotalDownstreamCap();
double s0_cap = getNet("S0")->getTotalDownstreamCap();
double s0_b_cap = getNet("S0_b")->getTotalDownstreamCap();
double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
double y_cap = getNet("Y")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->A", a_cap);
cache->set(cell_name + "->Cap->B", b_cap);
cache->set(cell_name + "->Cap->S0", s0_cap);
cache->set(cell_name + "->Cap->S0_b", s0_b_cap);
cache->set(cell_name + "->Cap->Y_b", y_b_cap);
cache->set(cell_name + "->Cap->Y", y_cap);
Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
Log::printLine(cell_name + "->Cap->S0=" + (String) s0_cap);
Log::printLine(cell_name + "->Cap->S0_b=" + (String) s0_b_cap);
Log::printLine(cell_name + "->Cap->Y_b=" + (String) y_b_cap);
Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
// Build abstracted timing model
double y_ron = getDriver("INV2_RonZN")->getOutputRes();
double a_to_y_delay = 0.0;
a_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
a_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
double b_to_y_delay = 0.0;
b_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
b_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
double s0_to_y_delay = 0.0;
s0_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
s0_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ1_RonZN")->calculateDelay());
s0_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Y", y_ron);
cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
cache->set(cell_name + "->Delay->S0_to_Y", s0_to_y_delay);
Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
Log::printLine(cell_name + "->Delay->S0_to_Y=" + (String) s0_to_y_delay);
// --------------------------------------------------------------------
return;
}
} // namespace DSENT
|