1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/NAND2.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::ceil;
using std::max;
NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
NAND2::~NAND2()
{}
void NAND2::initProperties()
{
return;
}
void NAND2::constructModel()
{
// All constructModel should do is create Area/NDDPower/Energy Results as
// well as instantiate any sub-instances using only the hard parameters
createInputPort("A");
createInputPort("B");
createOutputPort("Y");
createLoad("A_Cap");
createLoad("B_Cap");
createDelay("A_to_Y_delay");
createDelay("B_to_Y_delay");
createDriver("Y_Ron", true);
ElectricalLoad* a_cap = getLoad("A_Cap");
ElectricalLoad* b_cap = getLoad("A_Cap");
ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
ElectricalDriver* y_ron = getDriver("Y_Ron");
getNet("A")->addDownstreamNode(a_cap);
getNet("B")->addDownstreamNode(b_cap);
a_cap->addDownstreamNode(a_to_y_delay);
b_cap->addDownstreamNode(b_to_y_delay);
a_to_y_delay->addDownstreamNode(y_ron);
b_to_y_delay->addDownstreamNode(y_ron);
y_ron->addDownstreamNode(getNet("Y"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
// Create NAND Event Energy Result
createElectricalEventAtomicResult("NAND2");
getEventInfo("Idle")->setStaticTransitionInfos();
return;
}
void NAND2::updateModel()
{
// All updateModel should do is calculate numbers for the Area/NDDPower/Energy
// Results as anything else that needs to be done using either soft or hard parameters
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "NAND2_X" + (String) drive_strength;
// Get timing parameters
getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active"));
return;
}
void NAND2::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
String cell_name = "NAND2_X" + (String) drive_strength;
// Propagate the transition info and get the 0->1 transtion count
propagateTransitionInfo();
double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
getNddPowerResult("Leakage")->setValue(leakage);
// Get capacitances
double y_cap = cache->get(cell_name + "->Cap->Y");
double y_load_cap = getNet("Y")->getTotalDownstreamCap();
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Calculate NAND2Event energy
double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd;
getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01);
return;
}
void NAND2::propagateTransitionInfo()
{
// Get input signal transition info
const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
double A_prob_10 = A_prob_01;
double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
double B_prob_10 = B_prob_01;
double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
// Set output transition info
double Y_prob_00 = A_prob_11 * B_prob_11;
double Y_prob_01 = A_prob_11 * B_prob_10 +
A_prob_10 * (B_prob_11 + B_prob_10);
double Y_prob_11 = A_prob_00 +
A_prob_01 * (B_prob_00 + B_prob_10) +
A_prob_10 * (B_prob_00 + B_prob_01) +
A_prob_11 * B_prob_00;
// Check that probabilities add up to 1.0 with some finite tolerance
ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
"[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" +
(String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
// Turn probability of transitions per cycle into number of transitions per time unit
TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
getOutputPort("Y")->setTransitionInfo(trans_Y);
return;
}
void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Standard cell cache string
String cell_name = "NAND2_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Now actually build the full standard cell model
// Create the two input ports
createInputPort("A");
createInputPort("B");
createOutputPort("Y");
// Adds macros
CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y");
CellMacros::updateNand2(this, "NAND", drive_strength_);
// Cache area result
double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble());
cache->set(cell_name + "->Area->Active", area);
Log::printLine(cell_name + "->Area->Active=" + (String) area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble();
double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble();
double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble();
double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble();
cache->set(cell_name + "->Leakage->!A!B", leakage_00);
cache->set(cell_name + "->Leakage->!AB", leakage_01);
cache->set(cell_name + "->Leakage->A!B", leakage_10);
cache->set(cell_name + "->Leakage->AB", leakage_11);
Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
// --------------------------------------------------------------------
// Cache event energy results
/*
double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble();
double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble();
double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble();
cache->set(cell_name + "->Event_A_Flip", event_a_flip);
cache->set(cell_name + "->Event_B_Flip", event_b_flip);
cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
*/
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double a_cap = getNet("A")->getTotalDownstreamCap();
double b_cap = getNet("B")->getTotalDownstreamCap();
double y_cap = getNet("Y")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->A", a_cap);
cache->set(cell_name + "->Cap->B", b_cap);
cache->set(cell_name + "->Cap->Y", y_cap);
Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
double y_ron = getDriver("NAND_RonZN")->getOutputRes();
double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Y", y_ron);
cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
// --------------------------------------------------------------------
return;
}
} // namespace DSENT
|