summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/NAND2.cc
blob: 2599f852732287712567d68b6de2cd74f904b50a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#include "model/std_cells/NAND2.h"

#include <cmath>

#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"

namespace DSENT
{
    using std::ceil;
    using std::max;

    NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_)
        : StdCell(instance_name_, tech_model_)
    {
        initProperties();
    }

    NAND2::~NAND2()
    {}

    void NAND2::initProperties()
    {
        return;
    }

    void NAND2::constructModel()
    {
        // All constructModel should do is create Area/NDDPower/Energy Results as
        // well as instantiate any sub-instances using only the hard parameters
        
        createInputPort("A");
        createInputPort("B");
        createOutputPort("Y");

        createLoad("A_Cap");
        createLoad("B_Cap");
        createDelay("A_to_Y_delay");
        createDelay("B_to_Y_delay");
        createDriver("Y_Ron", true);
        
        ElectricalLoad* a_cap = getLoad("A_Cap");
        ElectricalLoad* b_cap = getLoad("A_Cap");
        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
        ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
        ElectricalDriver* y_ron = getDriver("Y_Ron");
        
        getNet("A")->addDownstreamNode(a_cap);
        getNet("B")->addDownstreamNode(b_cap);
        a_cap->addDownstreamNode(a_to_y_delay);        
        b_cap->addDownstreamNode(b_to_y_delay);        
        a_to_y_delay->addDownstreamNode(y_ron);
        b_to_y_delay->addDownstreamNode(y_ron);
        y_ron->addDownstreamNode(getNet("Y"));        
        
        // Create Area result
        // Create NDD Power result
        createElectricalAtomicResults();
        // Create NAND Event Energy Result
        createElectricalEventAtomicResult("NAND2");

        getEventInfo("Idle")->setStaticTransitionInfos();
        
        return;
    }
    
    void NAND2::updateModel()
    {
        // All updateModel should do is calculate numbers for the Area/NDDPower/Energy
        // Results as anything else that needs to be done using either soft or hard parameters

        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        String cell_name = "NAND2_X" + (String) drive_strength;

        // Get timing parameters
        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));        
        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
        getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));        
        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
                
        // Set the cell area
        getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active"));
        
        return;
    }
    
    void NAND2::useModel()
    {
        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        String cell_name = "NAND2_X" + (String) drive_strength;

        // Propagate the transition info and get the 0->1 transtion count
        propagateTransitionInfo();
        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();

        // Calculate leakage
        double leakage = 0;
        leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
        leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
        leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
        leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
        getNddPowerResult("Leakage")->setValue(leakage);
        
        // Get capacitances
        double y_cap = cache->get(cell_name + "->Cap->Y");
        double y_load_cap = getNet("Y")->getTotalDownstreamCap();

        // Get VDD
        double vdd = getTechModel()->get("Vdd");

        // Calculate NAND2Event energy
        double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd;
        getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01);

        return;
    }

    void NAND2::propagateTransitionInfo()
    {
        // Get input signal transition info
        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();

        double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);

        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
        double A_prob_10 = A_prob_01;
        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
        double B_prob_10 = B_prob_01;
        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;

        // Set output transition info
        double Y_prob_00 = A_prob_11 * B_prob_11;
        double Y_prob_01 = A_prob_11 * B_prob_10 +
                        A_prob_10 * (B_prob_11 + B_prob_10);
        double Y_prob_11 = A_prob_00 +
                        A_prob_01 * (B_prob_00 + B_prob_10) +
                        A_prob_10 * (B_prob_00 + B_prob_01) +
                        A_prob_11 * B_prob_00;
                        
        // Check that probabilities add up to 1.0 with some finite tolerance
        ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), 
            "[Error] " + getInstanceName() +  "Output transition probabilities must add up to 1 (" +
            (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");

        // Turn probability of transitions per cycle into number of transitions per time unit
        TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
        getOutputPort("Y")->setTransitionInfo(trans_Y);
        return;
    }

    void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
    {
        // Standard cell cache string
        String cell_name = "NAND2_X" + (String) drive_strength_;

        Log::printLine("=== " + cell_name + " ===");

        // Get parameters        
        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
        Map<double>* cache = cell_lib_->getStdCellCache();
        
        // Now actually build the full standard cell model
        // Create the two input ports
        createInputPort("A");
        createInputPort("B");
        createOutputPort("Y");
        
        // Adds macros
        CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y");
        CellMacros::updateNand2(this, "NAND", drive_strength_);

        // Cache area result
        double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble());
        cache->set(cell_name + "->Area->Active", area);
        Log::printLine(cell_name + "->Area->Active=" + (String) area);

        // --------------------------------------------------------------------
        // Leakage Model Calculation
        // --------------------------------------------------------------------
        double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble();
        double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble();        
        double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble();
        double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble();        
        cache->set(cell_name + "->Leakage->!A!B", leakage_00);
        cache->set(cell_name + "->Leakage->!AB", leakage_01);
        cache->set(cell_name + "->Leakage->A!B", leakage_10);
        cache->set(cell_name + "->Leakage->AB", leakage_11);
        Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
        Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
        Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
        Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
        // --------------------------------------------------------------------
        
        // Cache event energy results
        /*
        double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble();
        double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble();
        double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble();
        
        cache->set(cell_name + "->Event_A_Flip", event_a_flip);
        cache->set(cell_name + "->Event_B_Flip", event_b_flip);
        cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
        Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
        Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
        Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
        */
        // --------------------------------------------------------------------
        // Get Node Capacitances
        // --------------------------------------------------------------------
        double a_cap = getNet("A")->getTotalDownstreamCap();        
        double b_cap = getNet("B")->getTotalDownstreamCap();
        double y_cap = getNet("Y")->getTotalDownstreamCap();
        
        cache->set(cell_name + "->Cap->A", a_cap);
        cache->set(cell_name + "->Cap->B", b_cap);
        cache->set(cell_name + "->Cap->Y", y_cap);
        Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
        Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);        
        Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);        
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Build Internal Delay Model
        // --------------------------------------------------------------------
        double y_ron = getDriver("NAND_RonZN")->getOutputRes();
        double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
        double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay();
        
        cache->set(cell_name + "->DriveRes->Y", y_ron);
        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
        cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
        Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
        // --------------------------------------------------------------------
                
        return;

    }
    
} // namespace DSENT