summaryrefslogtreecommitdiff
path: root/ext/dsent/model/std_cells/OR2.cc
blob: ea57ad2f4afd6a9fd528d765cb75bae217f4d576 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* Copyright (c) 2012 Massachusetts Institute of Technology
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "model/std_cells/OR2.h"

#include <cmath>

#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"

namespace DSENT
{
    using std::max;

    OR2::OR2(const String& instance_name_, const TechModel* tech_model_)
        : StdCell(instance_name_, tech_model_)
    {
        initProperties();
    }

    OR2::~OR2()
    {}

    void OR2::initProperties()
    {
        return;
    }

    void OR2::constructModel()
    {
        createInputPort("A");
        createInputPort("B");
        createOutputPort("Y");

        createLoad("A_Cap");
        createLoad("B_Cap");
        createDelay("A_to_Y_delay");
        createDelay("B_to_Y_delay");
        createDriver("Y_Ron", true);

        ElectricalLoad* a_cap = getLoad("A_Cap");
        ElectricalLoad* b_cap = getLoad("B_Cap");
        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
        ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
        ElectricalDriver* y_ron = getDriver("Y_Ron");
        
        getNet("A")->addDownstreamNode(a_cap);
        getNet("B")->addDownstreamNode(b_cap);
        a_cap->addDownstreamNode(a_to_y_delay);        
        b_cap->addDownstreamNode(b_to_y_delay);        
        a_to_y_delay->addDownstreamNode(y_ron);
        b_to_y_delay->addDownstreamNode(y_ron);
        y_ron->addDownstreamNode(getNet("Y"));        
        
        // Create Area result
        // Create NDD Power result
        createElectricalAtomicResults();
        // Create OR Event Energy Result
        createElectricalEventAtomicResult("OR2");

        getEventInfo("Idle")->setStaticTransitionInfos();
        
        return;
    }

    void OR2::updateModel()
    {
        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Standard cell cache string
        const String& cell_name = "OR2_X" + (String) drive_strength;

        // Get timing parameters
        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));        
        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
        getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));        
        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));

        // Set the cell area
        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
        
        return;
    }

    void OR2::evaluateModel()
    {
        return;
    }

    void OR2::useModel()
    {
        // Get parameters
        double drive_strength = getDrivingStrength();
        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();

        // Stadard cell cache string
        const String& cell_name = "OR2_X" + (String) drive_strength;

        // Propagate the transition info and get the 0->1 transtion count
        propagateTransitionInfo();
        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();

        // Calculate leakage
        double leakage = 0;
        leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
        leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
        leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
        leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
        getNddPowerResult("Leakage")->setValue(leakage);

        // Get VDD
        double vdd = getTechModel()->get("Vdd");

        // Get capacitances
        double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
        double y_cap = cache->get(cell_name + "->Cap->Y");
        double y_load_cap = getNet("Y")->getTotalDownstreamCap();                
        
        // Calculate OR2Event energy
        double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
        getEventResult("OR2")->setValue(energy_per_trans_01 * Y_num_trans_01);
                
        return;
    }

    void OR2::propagateTransitionInfo()
    {
        // Get input signal transition info
        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();

        double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);

        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
        double A_prob_10 = A_prob_01;
        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
        double B_prob_10 = B_prob_01;
        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;

        // Set output transition info
        double Y_prob_00 = A_prob_00 * B_prob_00;
        double Y_prob_01 = A_prob_00 * B_prob_01 +
                        A_prob_01 * (B_prob_00 + B_prob_01);
        double Y_prob_11 = A_prob_00 * B_prob_11 +
                        A_prob_01 * (B_prob_10 + B_prob_11) +
                        A_prob_10 * (B_prob_01 + B_prob_11) +
                        A_prob_11;

        // Check that probabilities add up to 1.0 with some finite tolerance
        ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), "[Error] " + getInstanceName() + 
            "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " +
            (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");

        // Turn probability of transitions per cycle into number of transitions per time unit
        TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
        getOutputPort("Y")->setTransitionInfo(trans_Y);
        return;
    }

    // Creates the standard cell, characterizes and abstracts away the details
    void OR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
    {
        // Get parameters
        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
        Map<double>* cache = cell_lib_->getStdCellCache();

        // Stadard cell cache string
        const String& cell_name = "OR2_X" + (String) drive_strength_;

        Log::printLine("=== " + cell_name + " ===");

        // Now actually build the full standard cell model
        createInputPort("A");
        createInputPort("B");
        createOutputPort("Y");

        createNet("Y_b");

        // Adds macros
        CellMacros::addNor2(this, "NOR2", false, true, true, "A", "B", "Y_b");
        CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y");

        // Update macros
        CellMacros::updateNor2(this, "NOR2", drive_strength_ * 0.66);
        CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0);

        // Cache area result
        double area = 0.0;
        area += gate_pitch * getTotalHeight() * 1;
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("NOR2_GatePitches").toDouble();
        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble();
        cache->set(cell_name + "->ActiveArea", area);
        Log::printLine(cell_name + "->ActiveArea=" + (String)area);
        
        // --------------------------------------------------------------------
        // Leakage Model Calculation
        // --------------------------------------------------------------------
        // Cache leakage power results (for every single signal combination)
        double leakage_00 = 0.0; // !A, !B
        double leakage_01 = 0.0; // !A, B
        double leakage_10 = 0.0; // A, !B
        double leakage_11 = 0.0; // A, B

        leakage_00 += getGenProperties()->get("NOR2_LeakagePower_00").toDouble();
        leakage_00 += getGenProperties()->get("INV_LeakagePower_1").toDouble();

        leakage_01 += getGenProperties()->get("NOR2_LeakagePower_01").toDouble();
        leakage_01 += getGenProperties()->get("INV_LeakagePower_0").toDouble();

        leakage_10 += getGenProperties()->get("NOR2_LeakagePower_10").toDouble();
        leakage_10 += getGenProperties()->get("INV_LeakagePower_0").toDouble();

        leakage_11 += getGenProperties()->get("NOR2_LeakagePower_11").toDouble();
        leakage_11 += getGenProperties()->get("INV_LeakagePower_0").toDouble();

        cache->set(cell_name + "->Leakage->!A!B", leakage_00);
        cache->set(cell_name + "->Leakage->!AB", leakage_01);
        cache->set(cell_name + "->Leakage->A!B", leakage_10);
        cache->set(cell_name + "->Leakage->AB", leakage_11);
        Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
        Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
        Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
        Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Get Node Capacitances
        // --------------------------------------------------------------------
        double a_cap = getNet("A")->getTotalDownstreamCap();
        double b_cap = getNet("B")->getTotalDownstreamCap();
        double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
        double y_cap = getNet("Y")->getTotalDownstreamCap();

        cache->set(cell_name + "->Cap->A", a_cap);
        cache->set(cell_name + "->Cap->B", b_cap);
        cache->set(cell_name + "->Cap->Y_b", y_b_cap);
        cache->set(cell_name + "->Cap->Y", y_cap);
        Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
        Log::printLine(cell_name + "->Cap->B_Cap=" + (String) b_cap);
        Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
        Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Build Internal Delay Model
        // --------------------------------------------------------------------
        double y_ron = getDriver("INV_RonZN")->getOutputRes();
        double a_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() + 
                              getDriver("INV_RonZN")->calculateDelay();
        double b_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() + 
                              getDriver("INV_RonZN")->calculateDelay();

        cache->set(cell_name + "->DriveRes->Y", y_ron);
        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
        cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
        Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
        // --------------------------------------------------------------------

        return;
    }
} // namespace DSENT