1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalLoad.h"
namespace DSENT
{
//-------------------------------------------------------------------------
// Electrical Net
//-------------------------------------------------------------------------
ElectricalNet::ElectricalNet(const String& instance_name_, ElectricalModel* model_)
: ElectricalTimingNode(instance_name_, model_), m_distributed_res_(0), m_distributed_cap_(0)
{
}
ElectricalNet::~ElectricalNet()
{
}
double ElectricalNet::calculateDelay() const
{
// Remember that this is a pi model, delay is distributed cap * distributed_res / 2 +
// distributed res * (other downstream caps)
return 0.693 * (getTotalDownstreamCap() - m_distributed_cap_ / 2) * m_distributed_res_;
}
double ElectricalNet::calculateTransition() const
{
return 1.386 * getMaxUpstreamRes() * (m_distributed_cap_ * 0.2 + ElectricalTimingNode::getTotalDownstreamCap());
}
double ElectricalNet::getMaxUpstreamRes() const
{
return m_distributed_res_ + ElectricalTimingNode::getMaxUpstreamRes();
}
double ElectricalNet::getTotalDownstreamCap() const
{
return m_distributed_cap_ + ElectricalTimingNode::getTotalDownstreamCap();
}
void ElectricalNet::setDistributedCap(double distributed_cap_)
{
m_distributed_cap_ = distributed_cap_;
return;
}
void ElectricalNet::setDistributedRes(double distributed_res_)
{
m_distributed_res_ = distributed_res_;
return;
}
double ElectricalNet::getDistributedCap() const
{
return m_distributed_cap_;
}
double ElectricalNet::getDistributedRes() const
{
return m_distributed_res_;
}
bool ElectricalNet::isNet() const
{
return true;
}
} // namespace DSENT
|