blob: 09baa77e5b911ecdece04ed202c02b7994ef8350 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalLoad.h"
namespace DSENT
{
//-------------------------------------------------------------------------
// Electrical Net
//-------------------------------------------------------------------------
ElectricalNet::ElectricalNet(const String& instance_name_, ElectricalModel* model_)
: ElectricalTimingNode(instance_name_, model_), m_distributed_res_(0), m_distributed_cap_(0)
{
}
ElectricalNet::~ElectricalNet()
{
}
double ElectricalNet::calculateDelay() const
{
// Remember that this is a pi model, delay is distributed cap * distributed_res / 2 +
// distributed res * (other downstream caps)
return 0.693 * (getTotalDownstreamCap() - m_distributed_cap_ / 2) * m_distributed_res_;
}
double ElectricalNet::calculateTransition() const
{
return 1.386 * getMaxUpstreamRes() * (m_distributed_cap_ * 0.2 + ElectricalTimingNode::getTotalDownstreamCap());
}
double ElectricalNet::getMaxUpstreamRes() const
{
return m_distributed_res_ + ElectricalTimingNode::getMaxUpstreamRes();
}
double ElectricalNet::getTotalDownstreamCap() const
{
return m_distributed_cap_ + ElectricalTimingNode::getTotalDownstreamCap();
}
void ElectricalNet::setDistributedCap(double distributed_cap_)
{
m_distributed_cap_ = distributed_cap_;
return;
}
void ElectricalNet::setDistributedRes(double distributed_res_)
{
m_distributed_res_ = distributed_res_;
return;
}
double ElectricalNet::getDistributedCap() const
{
return m_distributed_cap_;
}
double ElectricalNet::getDistributedRes() const
{
return m_distributed_res_;
}
bool ElectricalNet::isNet() const
{
return true;
}
} // namespace DSENT
|