1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "tech/TechModel.h"
#include <cmath>
#include "model/std_cells/StdCellLib.h"
namespace DSENT
{
TechModel::TechModel()
: m_std_cell_lib_(NULL), m_available_wire_layers_(NULL)
{}
TechModel::~TechModel()
{}
const String& TechModel::get(const String &key_) const
{
return params.at(key_);
}
void TechModel::setStdCellLib(const StdCellLib* std_cell_lib_)
{
m_std_cell_lib_ = std_cell_lib_;
return;
}
const StdCellLib* TechModel::getStdCellLib() const
{
return m_std_cell_lib_;
}
TechModel* TechModel::clone() const
{
return new TechModel(*this);
}
void TechModel::readFile(const String& filename_)
{
// Read the main technology file
LibUtil::readFile(filename_, params);
// Search for "INCLUDE" to include more technology files
for (const auto &it : params)
{
const String& key = it.first;
if(key.compare(0, 8, "INCLUDE_") == 0)
{
const String& include_filename = it.second;
LibUtil::readFile(include_filename, params);
}
}
// Set the available wire layers
const vector<String>& available_wire_layer_vector = get("Wire->AvailableLayers").split("[,]");
m_available_wire_layers_ = new std::set<String>;
for(unsigned int i = 0; i < available_wire_layer_vector.size(); ++i)
{
m_available_wire_layers_->insert(available_wire_layer_vector[i]);
}
}
//-------------------------------------------------------------------------
// Transistor Related Functions
//-------------------------------------------------------------------------
//Returns the leakage current of NMOS transistors, given the transistor stakcing, transistor widths, and input combination
double TechModel::calculateNmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const
{
vector<double> stacked_mos_widths_(num_stacks_, uni_stacked_mos_width_);
return calculateNmosLeakageCurrent(num_stacks_, stacked_mos_widths_, input_vector_);
}
//Returns the leakage current of NMOS transistors, given the transistor stakcing, transistor widths, and input combination
double TechModel::calculateNmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const
{
// Get technology parameters
double vdd = get("Vdd");
double temp = get("Temperature");
double char_temp = get("Nmos->CharacterizedTemperature");
double min_off_current = get("Nmos->MinOffCurrent");
double off_current = get("Nmos->OffCurrent");
double subthreshold_swing = get("Nmos->SubthresholdSwing");
double dibl = get("Nmos->DIBL");
double temp_swing = get("Nmos->SubthresholdTempSwing");
// Map dibl to a swing value for easier calculation
double dibl_swing = subthreshold_swing / dibl;
//Calculate the leakage current factor
double leakage_current_factor = calculateLeakageCurrentFactor(num_stacks_, stacked_mos_widths_, input_vector_, vdd, subthreshold_swing, dibl_swing);
// Calcualte actual leakage current at characterized temperature
double leakage_current_char_tmp = stacked_mos_widths_[0] * off_current * std::pow(10.0, leakage_current_factor);
leakage_current_char_tmp = std::max(min_off_current, leakage_current_char_tmp);
// Calculate actual leakage current at temp
double leakage_current = leakage_current_char_tmp * std::pow(10.0, (temp - char_temp) / temp_swing);
return leakage_current;
}
double TechModel::calculatePmosLeakageCurrent(unsigned int num_stacks_, double uni_stacked_mos_width_, unsigned int input_vector_) const
{
vector<double> stacked_mos_widths_(num_stacks_, uni_stacked_mos_width_);
return calculatePmosLeakageCurrent(num_stacks_, stacked_mos_widths_, input_vector_);
}
//Returns the leakage current of PMOS transistors, given the transistor stakcing, transistor widths, and input combination
double TechModel::calculatePmosLeakageCurrent(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_) const
{
// Get technology parameters
double vdd = get("Vdd");
double temp = get("Temperature");
double char_temp = get("Pmos->CharacterizedTemperature");
double min_off_current = get("Pmos->MinOffCurrent");
double off_current = get("Pmos->OffCurrent");
double dibl = get("Pmos->DIBL");
double subthreshold_swing = get("Pmos->SubthresholdSwing");
double temp_swing = get("Nmos->SubthresholdTempSwing");
// Map dibl to a swing value for easier calculation
double dibl_swing = subthreshold_swing / dibl;
//Calculate the leakage current factor
double leakage_current_factor = calculateLeakageCurrentFactor(num_stacks_, stacked_mos_widths_, input_vector_, vdd, subthreshold_swing, dibl_swing);
// Calcualte actual leakage current at characterized temperature
double leakage_current_char_tmp = stacked_mos_widths_[0] * off_current * std::pow(10.0, leakage_current_factor);
leakage_current_char_tmp = std::max(min_off_current, leakage_current_char_tmp);
// Calculate actual leakage current at temp
double leakage_current = leakage_current_char_tmp * std::pow(10.0, (temp - char_temp) / temp_swing);
return leakage_current;
}
//Returns the leakage current, given the transistor stakcing, transistor widths, input combination,
//and technology information (vdd, subthreshold swing, subthreshold dibl swing)
double TechModel::calculateLeakageCurrentFactor(unsigned int num_stacks_, const vector<double>& stacked_mos_widths_, unsigned int input_vector_, double vdd_, double subthreshold_swing_, double dibl_swing_) const
{
// check everything is valid
ASSERT(num_stacks_ >= 1, "[Error] Number of stacks must be >= 1!");
ASSERT(stacked_mos_widths_.size() == num_stacks_, "[Error] Mismatch in number of stacks and the widths specified!");
//Use short name in this method
const double s1 = subthreshold_swing_;
const double s2 = dibl_swing_;
// Decode input combinations from input_vector_
std::vector<double> vs(num_stacks_, 0.0);
for(int i = 0; i < (int)num_stacks_; ++i)
{
double current_input = (double(input_vector_ & 0x1))*vdd_;
vs[i] = (current_input);
input_vector_ >>= 1;
}
// If the widths pointer is NULL, width is set to 1 by default
vector<double> ws = stacked_mos_widths_;
//Solve voltages at internal nodes of stacked transistors
// v[0] = 0
// v[num_stacks_] = vdd_
// v[i] = (1.0/(2*s1 + s2))*((s1 + s2)*v[i - 1] + s1*v[i + 1]
// + s2*(vs[i + 1] - vs[i]) + s1*s2*log10(ws[i + 1]/ws[i]))
//Use tri-matrix solver to solve the above linear system
double A = -(s1 + s2);
double B = 2*s1 + s2;
double C = -s1;
std::vector<double> a(num_stacks_ - 1, 0);
std::vector<double> b(num_stacks_ - 1, 0);
std::vector<double> c(num_stacks_ - 1, 0);
std::vector<double> d(num_stacks_ - 1, 0);
std::vector<double> v(num_stacks_ + 1, 0);
unsigned int eff_num_stacks = num_stacks_;
bool is_found_valid_v = false;
do
{
//Set boundary condition
v[0] = 0;
v[eff_num_stacks] = vdd_;
//If the effective number of stacks is 1, no matrix needs to be solved
if(eff_num_stacks == 1)
{
break;
}
//----------------------------------------------------------------------
//Setup the tri-matrix
//----------------------------------------------------------------------
for(int i = 0; i < (int)eff_num_stacks-2; ++i)
{
a[i + 1] = A;
c[i] = C;
}
for(int i = 0; i < (int)eff_num_stacks-1; ++i)
{
b[i] = B;
d[i] = s2*(vs[i + 1] - vs[i]) + s1*s2*std::log10(ws[i + 1]/ws[i]);
if(i == ((int)eff_num_stacks - 2))
{
d[i] -= C*vdd_;
}
}
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//Solve the tri-matrix
//----------------------------------------------------------------------
for(int i = 1; i < (int)eff_num_stacks-1; ++i)
{
double m = a[i]/b[i - 1];
b[i] -= m*c[i - 1];
d[i] -= m*d[i - 1];
}
v[eff_num_stacks - 1] = d[eff_num_stacks - 2]/b[eff_num_stacks - 2];
for(int i = eff_num_stacks - 3; i >= 0; --i)
{
v[i + 1] = (d[i] - c[i]*v[i + 2])/b[i];
}
//----------------------------------------------------------------------
//Check if the internal voltages are in increasing order
is_found_valid_v = true;
for(int i = 1; i <= (int)eff_num_stacks; ++i)
{
//If the ith internal voltage is not in increasing order
//(i-1)th transistor is in triode region
//Remove the transistors in triode region as it does not exist
if(v[i] < v[i - 1])
{
is_found_valid_v = false;
eff_num_stacks--;
vs.erase(vs.begin() + i - 1);
ws.erase(ws.begin() + i - 1);
break;
}
}
} while(!is_found_valid_v);
//Calculate the leakage current of the bottom transistor (first not in triode region)
double vgs = vs[0] - v[0];
double vds = v[1] - v[0];
double leakage_current_factor = vgs/s1 + (vds - vdd_)/s2;
//TODO - Check if the leakage current calculate for other transistors is identical
return leakage_current_factor;
}
//-------------------------------------------------------------------------
//-------------------------------------------------------------------------
// Wire Related Functions
//-------------------------------------------------------------------------
bool TechModel::isWireLayerExist(const String& layer_name_) const
{
std::set<String>::const_iterator it;
it = m_available_wire_layers_->find(layer_name_);
return (it != m_available_wire_layers_->end());
}
const std::set<String>* TechModel::getAvailableWireLayers() const
{
return m_available_wire_layers_;
}
double TechModel::calculateWireCapacitance(const String& layer_name_, double width_, double spacing_, double length_) const
{
// Get technology parameter
double min_width = get("Wire->" + layer_name_ + "->MinWidth").toDouble();
double min_spacing = get("Wire->" + layer_name_ + "->MinSpacing").toDouble();
double metal_thickness = get("Wire->" + layer_name_ + "->MetalThickness").toDouble();
double dielec_thickness = get("Wire->" + layer_name_ + "->DielectricThickness").toDouble();
double dielec_const = get("Wire->" + layer_name_ + "->DielectricConstant").toDouble();
ASSERT(width_ >= min_width, "[Error] Wire width must be >= " + (String) min_width + "!");
ASSERT(spacing_ >= min_spacing, "[Error] Wire spacing must be >= " + (String) min_spacing + "!");
ASSERT(length_ >= 0, "[Error] Wire length must be >= 0!");
double A, B, C;
// Calculate ground capacitance
A = width_ / dielec_thickness;
B = 2.04*std::pow((spacing_ / (spacing_ + 0.54 * dielec_thickness)), 1.77);
C = std::pow((metal_thickness / (metal_thickness + 4.53 * dielec_thickness)), 0.07);
double unit_gnd_cap = dielec_const * 8.85e-12 * (A + B * C);
A = 1.14 * (metal_thickness / spacing_) * std::exp(-4.0 * spacing_ / (spacing_ + 8.01 * dielec_thickness));
B = 2.37 * std::pow((width_ / (width_ + 0.31 * spacing_)), 0.28);
C = std::pow((dielec_thickness / (dielec_thickness + 8.96 * spacing_)), 0.76) *
std::exp(-2.0 * spacing_ / (spacing_ + 6.0 * dielec_thickness));
double unit_coupling_cap = dielec_const * 8.85e-12 * (A + B * C);
double total_cap = 2 * (unit_gnd_cap + unit_coupling_cap) * length_;
return total_cap;
}
double TechModel::calculateWireResistance(const String& layer_name_, double width_, double length_) const
{
// Get technology parameter
double min_width = get("Wire->" + layer_name_ + "->MinWidth");
//double barrier_thickness = get("Wire->" + layer_name_ + "->BarrierThickness");
double resistivity = get("Wire->" + layer_name_ + "->Resistivity");
double metal_thickness = get("Wire->" + layer_name_ + "->MetalThickness");
ASSERT(width_ >= min_width, "[Error] Wire width must be >= " + (String) min_width + "!");
ASSERT(length_ >= 0, "[Error] Wire length must be >= 0!");
// Calculate Rho
// double rho = 2.202e-8 + (1.030e-15 / (width_ - 2.0 * barrier_thickness));
double unit_res = resistivity / (width_ * metal_thickness);
//double unit_res = rho / ((width_ - 2.0 * barrier_thickness) * (metal_thickness - barrier_thickness));
double total_res = unit_res * length_;
return total_res;
}
//-------------------------------------------------------------------------
TechModel::TechModel(const TechModel& tech_model_)
: m_std_cell_lib_(tech_model_.m_std_cell_lib_),
params(tech_model_.params)
{}
} // namespace DSENT
|