1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
|
/*-
* Copyright (c) 2006 Joseph Koshy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <assert.h>
#include <string.h>
#include "elf32.h"
#include "elf64.h"
#include "libelf.h"
#include "_libelf.h"
/* WARNING: GENERATED FROM __file__. */
/*
* Macros to swap various integral quantities.
*/
#define SWAP_HALF(X) do { \
uint16_t _x = (uint16_t) (X); \
uint16_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_WORD(X) do { \
uint32_t _x = (uint32_t) (X); \
uint32_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR32(X) SWAP_WORD(X)
#define SWAP_OFF32(X) SWAP_WORD(X)
#define SWAP_SWORD(X) SWAP_WORD(X)
#define SWAP_WORD64(X) do { \
uint64_t _x = (uint64_t) (X); \
uint64_t _t = _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
_t <<= 8; _x >>= 8; _t |= _x & 0xFF; \
(X) = _t; \
} while (0)
#define SWAP_ADDR64(X) SWAP_WORD64(X)
#define SWAP_LWORD(X) SWAP_WORD64(X)
#define SWAP_OFF64(X) SWAP_WORD64(X)
#define SWAP_SXWORD(X) SWAP_WORD64(X)
#define SWAP_XWORD(X) SWAP_WORD64(X)
/*
* Write out various integral values. The destination pointer could
* be unaligned. Values are written out in native byte order. The
* destination pointer is incremented after the write.
*/
#define WRITE_BYTE(P,X) do { \
unsigned char *const _p = (unsigned char *) (P); \
_p[0] = (unsigned char) (X); \
(P) = _p + 1; \
} while (0)
#define WRITE_HALF(P,X) do { \
uint16_t _t = (X); \
unsigned char *const _p = (unsigned char *) (P); \
unsigned const char *const _q = (unsigned char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
(P) = _p + 2; \
} while (0)
#define WRITE_WORD(P,X) do { \
uint32_t _t = (X); \
unsigned char *const _p = (unsigned char *) (P); \
unsigned const char *const _q = (unsigned char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
(P) = _p + 4; \
} while (0)
#define WRITE_ADDR32(P,X) WRITE_WORD(P,X)
#define WRITE_OFF32(P,X) WRITE_WORD(P,X)
#define WRITE_SWORD(P,X) WRITE_WORD(P,X)
#define WRITE_WORD64(P,X) do { \
uint64_t _t = (X); \
unsigned char *const _p = (unsigned char *) (P); \
unsigned const char *const _q = (unsigned char *) &_t; \
_p[0] = _q[0]; \
_p[1] = _q[1]; \
_p[2] = _q[2]; \
_p[3] = _q[3]; \
_p[4] = _q[4]; \
_p[5] = _q[5]; \
_p[6] = _q[6]; \
_p[7] = _q[7]; \
(P) = _p + 8; \
} while (0)
#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X)
#define WRITE_LWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_OFF64(P,X) WRITE_WORD64(P,X)
#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_XWORD(P,X) WRITE_WORD64(P,X)
#define WRITE_IDENT(P,X) do { \
(void) memcpy((P), (X), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
/*
* Read in various integral values. The source pointer could be
* unaligned. Values are read in in native byte order. The source
* pointer is incremented appropriately.
*/
#define READ_BYTE(P,X) do { \
const unsigned char *const _p = \
(const unsigned char *) (P); \
(X) = _p[0]; \
(P) = (P) + 1; \
} while (0)
#define READ_HALF(P,X) do { \
uint16_t _t; \
unsigned char *const _q = (unsigned char *) &_t; \
const unsigned char *const _p = \
(const unsigned char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
(P) = (P) + 2; \
(X) = _t; \
} while (0)
#define READ_WORD(P,X) do { \
uint32_t _t; \
unsigned char *const _q = (unsigned char *) &_t; \
const unsigned char *const _p = \
(const unsigned char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
(P) = (P) + 4; \
(X) = _t; \
} while (0)
#define READ_ADDR32(P,X) READ_WORD(P,X)
#define READ_OFF32(P,X) READ_WORD(P,X)
#define READ_SWORD(P,X) READ_WORD(P,X)
#define READ_WORD64(P,X) do { \
uint64_t _t; \
unsigned char *const _q = (unsigned char *) &_t; \
const unsigned char *const _p = \
(const unsigned char *) (P); \
_q[0] = _p[0]; \
_q[1] = _p[1]; \
_q[2] = _p[2]; \
_q[3] = _p[3]; \
_q[4] = _p[4]; \
_q[5] = _p[5]; \
_q[6] = _p[6]; \
_q[7] = _p[7]; \
(P) = (P) + 8; \
(X) = _t; \
} while (0)
#define READ_ADDR64(P,X) READ_WORD64(P,X)
#define READ_LWORD(P,X) READ_WORD64(P,X)
#define READ_OFF64(P,X) READ_WORD64(P,X)
#define READ_SXWORD(P,X) READ_WORD64(P,X)
#define READ_XWORD(P,X) READ_WORD64(P,X)
#define READ_IDENT(P,X) do { \
(void) memcpy((X), (P), sizeof((X))); \
(P) = (P) + EI_NIDENT; \
} while (0)
#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1))
divert(-1)
/*
* Generate conversion routines for converting between in-memory and
* file representations of Elf data structures.
*
* `In-memory' representations of an Elf data structure use natural
* alignments and native byte ordering. This allows arithmetic and
* casting to work as expected. On the other hand the `file'
* representation of an ELF data structure could be packed tighter
* than its `in-memory' representation, and could be of a differing
* byte order. An additional complication is that `ar' only pads data
* to even addresses and so ELF archive member data being read from
* inside an `ar' archive could end up at misaligned memory addresses.
*
* Consequently, casting the `char *' pointers that point to memory
* representations (i.e., source pointers for the *_tof() functions
* and the destination pointers for the *_tom() functions), is safe,
* as these pointers should be correctly aligned for the memory type
* already. However, pointers to file representations have to be
* treated as being potentially unaligned and no casting can be done.
*/
include(SRCDIR`/elf_types.m4')
/*
* `IGNORE'_* flags turn off generation of template code.
*/
define(`IGNORE',
`define(IGNORE_$1`'32, 1)
define(IGNORE_$1`'64, 1)')
IGNORE(MOVEP)
IGNORE(NOTE)
define(IGNORE_BYTE, 1) /* 'lator, leave 'em bytes alone */
define(IGNORE_NOTE, 1)
define(IGNORE_SXWORD32, 1)
define(IGNORE_XWORD32, 1)
/*
* `BASE'_XXX flags cause class agnostic template functions
* to be generated.
*/
define(`BASE_BYTE', 1)
define(`BASE_HALF', 1)
define(`BASE_NOTE', 1)
define(`BASE_WORD', 1)
define(`BASE_LWORD', 1)
define(`BASE_SWORD', 1)
define(`BASE_XWORD', 1)
define(`BASE_SXWORD', 1)
/*
* `SIZEDEP'_XXX flags cause 32/64 bit variants to be generated
* for each primitive type.
*/
define(`SIZEDEP_ADDR', 1)
define(`SIZEDEP_OFF', 1)
/*
* `Primitive' ELF types are those that are an alias for an integral
* type. They have no internal structure. These can be copied using
* a `memcpy()', and byteswapped in straightforward way.
*
* Macro use:
* `$1': Name of the ELF type.
* `$2': C structure name suffix
* `$3': ELF class specifier for symbols, one of [`', `32', `64']
* `$4': ELF class specifier for types, one of [`32', `64']
*/
define(`MAKEPRIM_TO_F',`
static void
libelf_cvt_$1$3_tof(char *dst, char *src, size_t count, int byteswap)
{
Elf$4_$2 t, *s = (Elf$4_$2 *) (uintptr_t) src;
size_t c;
if (dst == src && !byteswap)
return;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*s));
return;
}
for (c = 0; c < count; c++) {
t = *s++;
SWAP_$1$3(t);
WRITE_$1$3(dst,t);
}
}
')
define(`MAKEPRIM_TO_M',`
static void
libelf_cvt_$1$3_tom(char *dst, char *src, size_t count, int byteswap)
{
Elf$4_$2 t, *d = (Elf$4_$2 *) (uintptr_t) dst;
size_t c;
if (dst == src && !byteswap)
return;
if (!byteswap) {
(void) memcpy(dst, src, count * sizeof(*d));
return;
}
for (c = 0; c < count; c++) {
READ_$1$3(src,t);
SWAP_$1$3(t);
*d++ = t;
}
}
')
define(`SWAP_FIELD',
`ifdef(`IGNORE_'$2,`',
`ifelse(BASE_$2,1,
`SWAP_$2(t.$1);
',
`ifelse($2,BYTE,`',
`ifelse($2,IDENT,`',
`SWAP_$2'SZ()`(t.$1);
')')')')')
define(`SWAP_MEMBERS',
`ifelse($#,1,`/**/',
`SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')')
define(`SWAP_STRUCT',
`pushdef(`SZ',$2)/* Swap an Elf$2_$1 */
SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
define(`WRITE_FIELD',
`ifelse(BASE_$2,1,
`WRITE_$2(dst,t.$1);
',
`ifelse($2,IDENT,
`WRITE_$2(dst,t.$1);
',
`WRITE_$2'SZ()`(dst,t.$1);
')')')
define(`WRITE_MEMBERS',
`ifelse($#,1,`/**/',
`WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')')
define(`WRITE_STRUCT',
`pushdef(`SZ',$2)/* Write an Elf$2_$1 */
WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
define(`READ_FIELD',
`ifelse(BASE_$2,1,
`READ_$2(s,t.$1);
',
`ifelse($2,IDENT,
`READ_$2(s,t.$1);
',
`READ_$2'SZ()`(s,t.$1);
')')')
define(`READ_MEMBERS',
`ifelse($#,1,`/**/',
`READ_FIELD($1)READ_MEMBERS(shift($@))')')
define(`READ_STRUCT',
`pushdef(`SZ',$2)/* Read an Elf$2_$1 */
READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')
/*
* Converters for non-integral ELF data structures.
*
* When converting data to file representation, the source pointer
* will be naturally aligned for a data structure's in-memory
* representation. When converting data to memory, the destination
* pointer will be similarly aligned.
*
* For in-place conversions, when converting to file representations,
* the source buffer is large enough to hold `file' data. When
* converting from file to memory, we need to be careful to work
* `backwards', to avoid overwriting unconverted data.
*
* Macro use:
* `$1': Name of the ELF type.
* `$2': C structure name suffix.
* `$3': ELF class specifier, one of [`', `32', `64']
*/
define(`MAKE_TO_F',
`ifdef(`IGNORE_'$1$3,`',`
static void
libelf_cvt$3_$1_tof(char *dst, char *src, size_t count, int byteswap)
{
Elf$3_$2 t, *s;
size_t c;
s = (Elf$3_$2 *) (uintptr_t) src;
for (c = 0; c < count; c++) {
t = *s++;
if (byteswap) {
SWAP_STRUCT($2,$3)
}
WRITE_STRUCT($2,$3)
}
}
')')
define(`MAKE_TO_M',
`ifdef(`IGNORE_'$1$3,`',`
static void
libelf_cvt$3_$1_tom(char *dst, char *src, size_t count, int byteswap)
{
Elf$3_$2 t, *d;
unsigned char *s,*s0;
size_t fsz;
fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT);
d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1);
s0 = (unsigned char *) src + (count - 1) * fsz;
while (count--) {
s = s0;
READ_STRUCT($2,$3)
if (byteswap) {
SWAP_STRUCT($2,$3)
}
*d-- = t; s0 -= fsz;
}
}
')')
/*
* Make type convertor functions from the type definition
* of the ELF type:
* - if the type is a base (i.e., `primitive') type:
* - if it is marked as to be ignored (i.e., `IGNORE_'TYPE)
* is defined, we skip the code generation step.
* - if the type is declared as `SIZEDEP', then 32 and 64 bit
* variants of the conversion functions are generated.
* - otherwise a 32 bit variant is generated.
* - if the type is a structure type, we generate 32 and 64 bit
* variants of the conversion functions.
*/
define(`MAKE_TYPE_CONVERTER',
`ifdef(`BASE'_$1,
`ifdef(`IGNORE_'$1,`',
`MAKEPRIM_TO_F($1,$2,`',64)
MAKEPRIM_TO_M($1,$2,`',64)')',
`ifdef(`SIZEDEP_'$1,
`MAKEPRIM_TO_F($1,$2,32,32)dnl
MAKEPRIM_TO_M($1,$2,32,32)dnl
MAKEPRIM_TO_F($1,$2,64,64)dnl
MAKEPRIM_TO_M($1,$2,64,64)',
`MAKE_TO_F($1,$2,32)dnl
MAKE_TO_F($1,$2,64)dnl
MAKE_TO_M($1,$2,32)dnl
MAKE_TO_M($1,$2,64)')')
')
define(`MAKE_TYPE_CONVERTERS',
`ifelse($#,1,`',
`MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')')
divert(0)
/*
* Sections of type ELF_T_BYTE are never byteswapped, consequently a
* simple memcpy suffices for both directions of conversion.
*/
static void
libelf_cvt_BYTE_tox(char *dst, char *src, size_t count, int byteswap)
{
(void) byteswap;
if (dst != src)
(void) memcpy(dst, src, count);
}
/*
* Elf_Note structures comprise a fixed size header followed by variable
* length strings. The fixed size header needs to be byte swapped, but
* not the strings.
*
* Argument `count' denotes the total number of bytes to be converted.
*/
static void
libelf_cvt_NOTE_tom(char *dst, char *src, size_t count, int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz;
if (dst == src && !byteswap)
return;
if (!byteswap) {
(void) memcpy(dst, src, count);
return;
}
while (count > sizeof(Elf_Note)) {
READ_WORD(src, namesz);
READ_WORD(src, descsz);
READ_WORD(src, type);
if (byteswap) {
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
}
en = (Elf_Note *) (uintptr_t) dst;
en->n_namesz = namesz;
en->n_descsz = descsz;
en->n_type = type;
dst += sizeof(Elf_Note);
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz)
sz = count;
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
}
}
static void
libelf_cvt_NOTE_tof(char *dst, char *src, size_t count, int byteswap)
{
uint32_t namesz, descsz, type;
Elf_Note *en;
size_t sz;
if (dst == src && !byteswap)
return;
if (!byteswap) {
(void) memcpy(dst, src, count);
return;
}
while (count > sizeof(Elf_Note)) {
en = (Elf_Note *) (uintptr_t) src;
namesz = en->n_namesz;
descsz = en->n_descsz;
type = en->n_type;
if (byteswap) {
SWAP_WORD(namesz);
SWAP_WORD(descsz);
SWAP_WORD(type);
}
WRITE_WORD(dst, namesz);
WRITE_WORD(dst, descsz);
WRITE_WORD(dst, type);
src += sizeof(Elf_Note);
ROUNDUP2(namesz, 4);
ROUNDUP2(descsz, 4);
sz = namesz + descsz;
if (count < sz)
sz = count;
(void) memcpy(dst, src, sz);
src += sz;
dst += sz;
count -= sz;
}
}
MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST)
struct converters {
void (*tof32)(char *dst, char *src, size_t cnt, int byteswap);
void (*tom32)(char *dst, char *src, size_t cnt, int byteswap);
void (*tof64)(char *dst, char *src, size_t cnt, int byteswap);
void (*tom64)(char *dst, char *src, size_t cnt, int byteswap);
};
divert(-1)
define(`CONV',
`ifdef(`IGNORE_'$1$2,
`.$3$2 = NULL',
`ifdef(`BASE_'$1,
`ifdef(`IGNORE_'$1,
`.$3$2 = NULL',
`.$3$2 = libelf_cvt_$1_$3')',
`ifdef(`SIZEDEP_'$1,
`.$3$2 = libelf_cvt_$1$2_$3',
`.$3$2 = libelf_cvt$2_$1_$3')')')')
define(`CONVERTER_NAME',
`[ELF_T_$1] = {
CONV($1,32,tof), CONV($1,32,tom),
CONV($1,64,tof), CONV($1,64,tom) },')')
define(`CONVERTER_NAMES',
`ifelse($#,1,`',
`CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')')
undefine(`IGNORE_BYTE32')
undefine(`IGNORE_BYTE64')
divert(0)
static struct converters cvt[ELF_T_NUM] = {
CONVERTER_NAMES(ELF_TYPE_LIST)
/*
* Types that needs hand-coded converters follow.
*/
[ELF_T_BYTE] = {
.tof32 = libelf_cvt_BYTE_tox,
.tom32 = libelf_cvt_BYTE_tox,
.tof64 = libelf_cvt_BYTE_tox,
.tom64 = libelf_cvt_BYTE_tox
},
[ELF_T_NOTE] = {
.tof32 = libelf_cvt_NOTE_tof,
.tom32 = libelf_cvt_NOTE_tom,
.tof64 = libelf_cvt_NOTE_tof,
.tom64 = libelf_cvt_NOTE_tom
}
};
void (*_libelf_get_translator(Elf_Type t, int direction, int elfclass))
(char *_dst, char *_src, size_t _cnt, int _byteswap)
{
assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
if (t >= ELF_T_NUM ||
(elfclass != ELFCLASS32 && elfclass != ELFCLASS64) ||
(direction != ELF_TOFILE && direction != ELF_TOMEMORY))
return (NULL);
return ((elfclass == ELFCLASS32) ?
(direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
(direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
}
|