1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <cassert>
#include <cmath>
#include <iostream>
#include "basic_circuit.h"
#include "parameter.h"
uint32_t _log2(uint64_t num) {
uint32_t log2 = 0;
if (num == 0) {
std::cerr << "log0?" << std::endl;
exit(1);
}
while (num > 1) {
num = (num >> 1);
log2++;
}
return log2;
}
bool is_pow2(int64_t val) {
if (val <= 0) {
return false;
} else if (val == 1) {
return true;
} else {
return (_log2(val) != _log2(val - 1));
}
}
int powers (int base, int n) {
int i, p;
p = 1;
for (i = 1; i <= n; ++i)
p *= base;
return p;
}
/*----------------------------------------------------------------------*/
double logtwo (double x) {
assert(x > 0);
return ((double) (log (x) / log (2.0)));
}
/*----------------------------------------------------------------------*/
double gate_C(
double width,
double wirelength,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
const TechnologyParameter::DeviceType * dt;
if (_is_dram && _is_cell) {
dt = &g_tp.dram_acc; //DRAM cell access transistor
} else if (_is_dram && _is_wl_tr) {
dt = &g_tp.dram_wl; //DRAM wordline transistor
} else if (!_is_dram && _is_cell) {
dt = &g_tp.sram_cell; // SRAM cell access transistor
} else {
dt = &g_tp.peri_global;
}
return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire;
}
// returns gate capacitance in Farads
// actually this function is the same as gate_C() now
double gate_C_pass(
double width, // gate width in um (length is Lphy_periph_global)
double wirelength, // poly wire length going to gate in lambda
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
// v5.0
const TechnologyParameter::DeviceType * dt;
if ((_is_dram) && (_is_cell)) {
dt = &g_tp.dram_acc; //DRAM cell access transistor
} else if ((_is_dram) && (_is_wl_tr)) {
dt = &g_tp.dram_wl; //DRAM wordline transistor
} else if ((!_is_dram) && _is_cell) {
dt = &g_tp.sram_cell; // SRAM cell access transistor
} else {
dt = &g_tp.peri_global;
}
return (dt->C_g_ideal + dt->C_overlap + 3*dt->C_fringe)*width + dt->l_phy*Cpolywire;
}
double drain_C_(
double width,
int nchannel,
int stack,
int next_arg_thresh_folding_width_or_height_cell,
double fold_dimension,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
double w_folded_tr;
const TechnologyParameter::DeviceType * dt;
if ((_is_dram) && (_is_cell)) {
dt = &g_tp.dram_acc; // DRAM cell access transistor
} else if ((_is_dram) && (_is_wl_tr)) {
dt = &g_tp.dram_wl; // DRAM wordline transistor
} else if ((!_is_dram) && _is_cell) {
dt = &g_tp.sram_cell; // SRAM cell access transistor
} else {
dt = &g_tp.peri_global;
}
double c_junc_area = dt->C_junc;
double c_junc_sidewall = dt->C_junc_sidewall;
double c_fringe = 2 * dt->C_fringe;
double c_overlap = 2 * dt->C_overlap;
double drain_C_metal_connecting_folded_tr = 0;
// determine the width of the transistor after folding (if it is getting folded)
if (next_arg_thresh_folding_width_or_height_cell == 0) {
// interpret fold_dimension as the the folding width threshold
// i.e. the value of transistor width above which the transistor gets folded
w_folded_tr = fold_dimension;
} else { // interpret fold_dimension as the height of the cell that this transistor is part of.
double h_tr_region = fold_dimension - 2 * g_tp.HPOWERRAIL;
// TODO : w_folded_tr must come from Component::compute_gate_area()
double ratio_p_to_n = 2.0 / (2.0 + 1.0);
if (nchannel) {
w_folded_tr = (1 - ratio_p_to_n) * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS);
} else {
w_folded_tr = ratio_p_to_n * (h_tr_region - g_tp.MIN_GAP_BET_P_AND_N_DIFFS);
}
}
int num_folded_tr = (int) (ceil(width / w_folded_tr));
if (num_folded_tr < 2) {
w_folded_tr = width;
}
double total_drain_w = (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) + // only for drain
(stack - 1) * g_tp.spacing_poly_to_poly;
double drain_h_for_sidewall = w_folded_tr;
double total_drain_height_for_cap_wrt_gate = w_folded_tr + 2 * w_folded_tr * (stack - 1);
if (num_folded_tr > 1) {
total_drain_w += (num_folded_tr - 2) * (g_tp.w_poly_contact + 2 * g_tp.spacing_poly_to_contact) +
(num_folded_tr - 1) * ((stack - 1) * g_tp.spacing_poly_to_poly);
if (num_folded_tr % 2 == 0) {
drain_h_for_sidewall = 0;
}
total_drain_height_for_cap_wrt_gate *= num_folded_tr;
drain_C_metal_connecting_folded_tr = g_tp.wire_local.C_per_um * total_drain_w;
}
double drain_C_area = c_junc_area * total_drain_w * w_folded_tr;
double drain_C_sidewall = c_junc_sidewall * (drain_h_for_sidewall + 2 * total_drain_w);
double drain_C_wrt_gate = (c_fringe + c_overlap) * total_drain_height_for_cap_wrt_gate;
return (drain_C_area + drain_C_sidewall + drain_C_wrt_gate + drain_C_metal_connecting_folded_tr);
}
double tr_R_on(
double width,
int nchannel,
int stack,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
const TechnologyParameter::DeviceType * dt;
if ((_is_dram) && (_is_cell)) {
dt = &g_tp.dram_acc; //DRAM cell access transistor
} else if ((_is_dram) && (_is_wl_tr)) {
dt = &g_tp.dram_wl; //DRAM wordline transistor
} else if ((!_is_dram) && _is_cell) {
dt = &g_tp.sram_cell; // SRAM cell access transistor
} else {
dt = &g_tp.peri_global;
}
double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on;
return (stack * restrans / width);
}
/* This routine operates in reverse: given a resistance, it finds
* the transistor width that would have this R. It is used in the
* data wordline to estimate the wordline driver size. */
// returns width in um
double R_to_w(
double res,
int nchannel,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
const TechnologyParameter::DeviceType * dt;
if ((_is_dram) && (_is_cell)) {
dt = &g_tp.dram_acc; //DRAM cell access transistor
} else if ((_is_dram) && (_is_wl_tr)) {
dt = &g_tp.dram_wl; //DRAM wordline transistor
} else if ((!_is_dram) && (_is_cell)) {
dt = &g_tp.sram_cell; // SRAM cell access transistor
} else {
dt = &g_tp.peri_global;
}
double restrans = (nchannel) ? dt->R_nch_on : dt->R_pch_on;
return (restrans / res);
}
double pmos_to_nmos_sz_ratio(
bool _is_dram,
bool _is_wl_tr) {
double p_to_n_sizing_ratio;
if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
p_to_n_sizing_ratio = g_tp.dram_wl.n_to_p_eff_curr_drv_ratio;
} else { //DRAM or SRAM all other transistors
p_to_n_sizing_ratio = g_tp.peri_global.n_to_p_eff_curr_drv_ratio;
}
return p_to_n_sizing_ratio;
}
// "Timing Models for MOS Circuits" by Mark Horowitz, 1984
double horowitz(
double inputramptime, // input rise time
double tf, // time constant of gate
double vs1, // threshold voltage
double vs2, // threshold voltage
int rise) { // whether input rises or fall
if (inputramptime == 0 && vs1 == vs2) {
return tf * (vs1 < 1 ? -log(vs1) : log(vs1));
}
double a, b, td;
a = inputramptime / tf;
if (rise == RISE) {
b = 0.5;
td = tf * sqrt(log(vs1) * log(vs1) + 2 * a * b * (1.0 - vs1)) +
tf * (log(vs1) - log(vs2));
} else {
b = 0.4;
td = tf * sqrt(log(1.0 - vs1) * log(1.0 - vs1) + 2 * a * b * (vs1)) +
tf * (log(1.0 - vs1) - log(1.0 - vs2));
}
return (td);
}
double cmos_Ileak(
double nWidth,
double pWidth,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
TechnologyParameter::DeviceType * dt;
if ((!_is_dram) && (_is_cell)) { //SRAM cell access transistor
dt = &(g_tp.sram_cell);
} else if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
dt = &(g_tp.dram_wl);
} else { //DRAM or SRAM all other transistors
dt = &(g_tp.peri_global);
}
return nWidth*dt->I_off_n + pWidth*dt->I_off_p;
}
double simplified_nmos_leakage(
double nwidth,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
TechnologyParameter::DeviceType * dt;
if ((!_is_dram) && (_is_cell)) { //SRAM cell access transistor
dt = &(g_tp.sram_cell);
} else if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
dt = &(g_tp.dram_wl);
} else { //DRAM or SRAM all other transistors
dt = &(g_tp.peri_global);
}
return nwidth * dt->I_off_n;
}
int factorial(int n, int m) {
int fa = m, i;
for (i = m + 1; i <= n; i++)
fa *= i;
return fa;
}
int combination(int n, int m) {
int ret;
ret = factorial(n, m + 1) / factorial(n - m);
return ret;
}
double simplified_pmos_leakage(
double pwidth,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
TechnologyParameter::DeviceType * dt;
if ((!_is_dram) && (_is_cell)) { //SRAM cell access transistor
dt = &(g_tp.sram_cell);
} else if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
dt = &(g_tp.dram_wl);
} else { //DRAM or SRAM all other transistors
dt = &(g_tp.peri_global);
}
return pwidth * dt->I_off_p;
}
double cmos_Ig_n(
double nWidth,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
TechnologyParameter::DeviceType * dt;
if ((!_is_dram) && (_is_cell)) { //SRAM cell access transistor
dt = &(g_tp.sram_cell);
} else if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
dt = &(g_tp.dram_wl);
} else { //DRAM or SRAM all other transistors
dt = &(g_tp.peri_global);
}
return nWidth*dt->I_g_on_n;
}
double cmos_Ig_p(
double pWidth,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr) {
TechnologyParameter::DeviceType * dt;
if ((!_is_dram) && (_is_cell)) { //SRAM cell access transistor
dt = &(g_tp.sram_cell);
} else if ((_is_dram) && (_is_wl_tr)) { //DRAM wordline transistor
dt = &(g_tp.dram_wl);
} else { //DRAM or SRAM all other transistors
dt = &(g_tp.peri_global);
}
return pWidth*dt->I_g_on_p;
}
double cmos_Isub_leakage(
double nWidth,
double pWidth,
int fanin,
enum Gate_type g_type,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr,
enum Half_net_topology topo) {
assert (fanin >= 1);
double nmos_leak = simplified_nmos_leakage(nWidth, _is_dram, _is_cell, _is_wl_tr);
double pmos_leak = simplified_pmos_leakage(pWidth, _is_dram, _is_cell, _is_wl_tr);
double Isub = 0;
int num_states;
int num_off_tx;
num_states = int(pow(2.0, fanin));
switch (g_type) {
case nmos:
if (fanin == 1) {
Isub = nmos_leak / num_states;
} else {
if (topo == parallel) {
//only when all tx are off, leakage power is non-zero.
//The possibility of this state is 1/num_states
Isub = nmos_leak * fanin / num_states;
} else {
for (num_off_tx = 1; num_off_tx <= fanin; num_off_tx++) {
//when num_off_tx ==0 there is no leakage power
Isub += nmos_leak * pow(UNI_LEAK_STACK_FACTOR,
(num_off_tx - 1)) *
combination(fanin, num_off_tx);
}
Isub /= num_states;
}
}
break;
case pmos:
if (fanin == 1) {
Isub = pmos_leak / num_states;
} else {
if (topo == parallel) {
//only when all tx are off, leakage power is non-zero.
//The possibility of this state is 1/num_states
Isub = pmos_leak * fanin / num_states;
} else {
for (num_off_tx = 1; num_off_tx <= fanin; num_off_tx++) {
//when num_off_tx ==0 there is no leakage power
Isub += pmos_leak * pow(UNI_LEAK_STACK_FACTOR,
(num_off_tx - 1)) *
combination(fanin, num_off_tx);
}
Isub /= num_states;
}
}
break;
case inv:
Isub = (nmos_leak + pmos_leak) / 2;
break;
case nand:
Isub += fanin * pmos_leak;//the pullup network
for (num_off_tx = 1; num_off_tx <= fanin; num_off_tx++) {
// the pulldown network
Isub += nmos_leak * pow(UNI_LEAK_STACK_FACTOR,
(num_off_tx - 1)) *
combination(fanin, num_off_tx);
}
Isub /= num_states;
break;
case nor:
for (num_off_tx = 1; num_off_tx <= fanin; num_off_tx++) {
// the pullup network
Isub += pmos_leak * pow(UNI_LEAK_STACK_FACTOR,
(num_off_tx - 1)) *
combination(fanin, num_off_tx);
}
Isub += fanin * nmos_leak;//the pulldown network
Isub /= num_states;
break;
case tri:
Isub += (nmos_leak + pmos_leak) / 2;//enabled
//disabled upper bound of leakage power
Isub += nmos_leak * UNI_LEAK_STACK_FACTOR;
Isub /= 2;
break;
case tg:
Isub = (nmos_leak + pmos_leak) / 2;
break;
default:
assert(0);
break;
}
return Isub;
}
double cmos_Ig_leakage(
double nWidth,
double pWidth,
int fanin,
enum Gate_type g_type,
bool _is_dram,
bool _is_cell,
bool _is_wl_tr,
enum Half_net_topology topo) {
assert (fanin >= 1);
double nmos_leak = cmos_Ig_n(nWidth, _is_dram, _is_cell, _is_wl_tr);
double pmos_leak = cmos_Ig_p(pWidth, _is_dram, _is_cell, _is_wl_tr);
double Ig_on = 0;
int num_states;
int num_on_tx;
num_states = int(pow(2.0, fanin));
switch (g_type) {
case nmos:
if (fanin == 1) {
Ig_on = nmos_leak / num_states;
} else {
if (topo == parallel) {
for (num_on_tx = 1; num_on_tx <= fanin; num_on_tx++) {
Ig_on += nmos_leak * combination(fanin, num_on_tx) *
num_on_tx;
}
} else {
//pull down network when all TXs are on.
Ig_on += nmos_leak * fanin;
//num_on_tx is the number of on tx
for (num_on_tx = 1; num_on_tx < fanin; num_on_tx++) {
//when num_on_tx=[1,n-1]
//TODO: this is a approximation now, a precise computation
//will be very complicated.
Ig_on += nmos_leak * combination(fanin, num_on_tx) *
num_on_tx / 2;
}
Ig_on /= num_states;
}
}
break;
case pmos:
if (fanin == 1) {
Ig_on = pmos_leak / num_states;
} else {
if (topo == parallel) {
for (num_on_tx = 1; num_on_tx <= fanin; num_on_tx++) {
Ig_on += pmos_leak * combination(fanin, num_on_tx) *
num_on_tx;
}
} else {
//pull down network when all TXs are on.
Ig_on += pmos_leak * fanin;
//num_on_tx is the number of on tx
for (num_on_tx = 1; num_on_tx < fanin; num_on_tx++) {
//when num_on_tx=[1,n-1]
//TODO: this is a approximation now, a precise computation
//will be very complicated.
Ig_on += pmos_leak * combination(fanin, num_on_tx) *
num_on_tx / 2;
}
Ig_on /= num_states;
}
}
break;
case inv:
Ig_on = (nmos_leak + pmos_leak) / 2;
break;
case nand:
//pull up network
//when num_on_tx=[1,n]
for (num_on_tx = 1; num_on_tx <= fanin; num_on_tx++) {
Ig_on += pmos_leak * combination(fanin, num_on_tx) * num_on_tx;
}
//pull down network
Ig_on += nmos_leak * fanin;//pull down network when all TXs are on.
//num_on_tx is the number of on tx
for (num_on_tx = 1; num_on_tx < fanin; num_on_tx++) {
//when num_on_tx=[1,n-1]
//TODO: this is a approximation now, a precise computation will be
//very complicated.
Ig_on += nmos_leak * combination(fanin, num_on_tx) * num_on_tx / 2;
}
Ig_on /= num_states;
break;
case nor:
// num_on_tx is the number of on tx in pull up network
Ig_on += pmos_leak * fanin;//pull up network when all TXs are on.
for (num_on_tx = 1; num_on_tx < fanin; num_on_tx++) {
Ig_on += pmos_leak * combination(fanin, num_on_tx) * num_on_tx / 2;
}
//pull down network
for (num_on_tx = 1; num_on_tx <= fanin; num_on_tx++) {
//when num_on_tx=[1,n]
Ig_on += nmos_leak * combination(fanin, num_on_tx) * num_on_tx;
}
Ig_on /= num_states;
break;
case tri:
Ig_on += (2 * nmos_leak + 2 * pmos_leak) / 2;//enabled
//disabled upper bound of leakage power
Ig_on += (nmos_leak + pmos_leak) / 2;
Ig_on /= 2;
break;
case tg:
Ig_on = (nmos_leak + pmos_leak) / 2;
break;
default:
assert(0);
break;
}
return Ig_on;
}
double shortcircuit_simple(
double vt,
double velocity_index,
double c_in,
double c_out,
double w_nmos,
double w_pmos,
double i_on_n,
double i_on_p,
double i_on_n_in,
double i_on_p_in,
double vdd) {
double p_short_circuit, p_short_circuit_discharge, p_short_circuit_charge, p_short_circuit_discharge_low, p_short_circuit_discharge_high, p_short_circuit_charge_low, p_short_circuit_charge_high; //this is actually energy
double fo_n, fo_p, fanout, beta_ratio, vt_to_vdd_ratio;
fo_n = i_on_n / i_on_n_in;
fo_p = i_on_p / i_on_p_in;
fanout = c_out / c_in;
beta_ratio = i_on_p / i_on_n;
vt_to_vdd_ratio = vt / vdd;
//p_short_circuit_discharge_low = 10/3*(pow(0.5-vt_to_vdd_ratio,3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
p_short_circuit_discharge_low =
10 / 3 * (pow(((vdd - vt) - vt_to_vdd_ratio), 3.0) /
pow(velocity_index, 2.0) / pow(2.0, 3 * vt_to_vdd_ratio *
vt_to_vdd_ratio)) * c_in *
vdd * vdd * fo_p * fo_p / fanout / beta_ratio;
p_short_circuit_charge_low =
10 / 3 * (pow(((vdd - vt) - vt_to_vdd_ratio), 3.0) /
pow(velocity_index, 2.0) / pow(2.0, 3 * vt_to_vdd_ratio *
vt_to_vdd_ratio)) * c_in *
vdd * vdd * fo_n * fo_n / fanout * beta_ratio;
// double t1, t2, t3, t4, t5;
// t1=pow(((vdd-vt)-vt_to_vdd_ratio),3);
// t2=pow(velocity_index,2.0);
// t3=pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio);
// t4=t1/t2/t3;
// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
p_short_circuit_discharge_high =
pow(((vdd - vt) - vt_to_vdd_ratio), 1.5) * c_in * vdd * vdd *
fo_p / 10 / pow(2, 3 * vt_to_vdd_ratio + 2 * velocity_index);
p_short_circuit_charge_high = pow(((vdd - vt) - vt_to_vdd_ratio), 1.5) *
c_in * vdd * vdd * fo_n / 10 / pow(2, 3 * vt_to_vdd_ratio + 2 *
velocity_index);
// t1=pow(((vdd-vt)-vt_to_vdd_ratio),1.5);
// t2=pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
// t3=t1/t2;
// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
// p_short_circuit_discharge = 1.0/(1.0/p_short_circuit_discharge_low + 1.0/p_short_circuit_discharge_high);
// p_short_circuit_charge = 1/(1/p_short_circuit_charge_low + 1/p_short_circuit_charge_high); //harmmoic mean cannot be applied simple formulas.
p_short_circuit_discharge = p_short_circuit_discharge_low;
p_short_circuit_charge = p_short_circuit_charge_low;
p_short_circuit = (p_short_circuit_discharge + p_short_circuit_charge) / 2;
return (p_short_circuit);
}
double shortcircuit(
double vt,
double velocity_index,
double c_in,
double c_out,
double w_nmos,
double w_pmos,
double i_on_n,
double i_on_p,
double i_on_n_in,
double i_on_p_in,
double vdd) {
//this is actually energy
double p_short_circuit = 0, p_short_circuit_discharge;
double fo_n, fo_p, fanout, beta_ratio, vt_to_vdd_ratio;
double f_alpha, k_v, e, g_v_alpha, h_v_alpha;
fo_n = i_on_n / i_on_n_in;
fo_p = i_on_p / i_on_p_in;
fanout = 1;
beta_ratio = i_on_p / i_on_n;
vt_to_vdd_ratio = vt / vdd;
e = 2.71828;
f_alpha = 1 / (velocity_index + 2) - velocity_index /
(2 * (velocity_index + 3)) + velocity_index / (velocity_index + 4) *
(velocity_index / 2 - 1);
k_v = 0.9 / 0.8 + (vdd - vt) / 0.8 * log(10 * (vdd - vt) / e);
g_v_alpha = (velocity_index + 1) *
pow((1 - velocity_index), velocity_index) *
pow((1 - velocity_index), velocity_index / 2) / f_alpha /
pow((1 - velocity_index - velocity_index),
(velocity_index / 2 + velocity_index + 2));
h_v_alpha = pow(2, velocity_index) * (velocity_index + 1) *
pow((1 - velocity_index), velocity_index) /
pow((1 - velocity_index - velocity_index), (velocity_index + 1));
//p_short_circuit_discharge_low = 10/3*(pow(0.5-vt_to_vdd_ratio,3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
// p_short_circuit_discharge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_p*fo_p/fanout/beta_ratio;
// p_short_circuit_charge_low = 10/3*(pow(((vdd-vt)-vt_to_vdd_ratio),3.0)/pow(velocity_index,2.0)/pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio))*c_in*vdd*vdd*fo_n*fo_n/fanout*beta_ratio;
// double t1, t2, t3, t4, t5;
// t1=pow(((vdd-vt)-vt_to_vdd_ratio),3);
// t2=pow(velocity_index,2.0);
// t3=pow(2.0,3*vt_to_vdd_ratio*vt_to_vdd_ratio);
// t4=t1/t2/t3;
//
// cout <<t1<<"t1\n"<<t2<<"t2\n"<<t3<<"t3\n"<<t4<<"t4\n"<<fanout<<endl;
//
//
// p_short_circuit_discharge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_p/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
// p_short_circuit_charge_high = pow(((vdd-vt)-vt_to_vdd_ratio),1.5)*c_in*vdd*vdd*fo_n/10/pow(2, 3*vt_to_vdd_ratio+2*velocity_index);
//
// p_short_circuit_discharge = 1.0/(1.0/p_short_circuit_discharge_low + 1.0/p_short_circuit_discharge_high);
// p_short_circuit_charge = 1/(1/p_short_circuit_charge_low + 1/p_short_circuit_charge_high);
//
// p_short_circuit = (p_short_circuit_discharge + p_short_circuit_charge)/2;
//
// p_short_circuit = p_short_circuit_discharge;
p_short_circuit_discharge = k_v * vdd * vdd * c_in * fo_p * fo_p /
((vdd - vt) * g_v_alpha * fanout * beta_ratio / 2 / k_v + h_v_alpha *
fo_p);
return (p_short_circuit);
}
|