summaryrefslogtreecommitdiff
path: root/ext/mcpat/cacti/crossbar.cc
blob: a3d8532d5bf3e4f87c37338b841c2d40202e5436 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*****************************************************************************
 *                                McPAT/CACTI
 *                      SOFTWARE LICENSE AGREEMENT
 *            Copyright 2012 Hewlett-Packard Development Company, L.P.
 *                          All Rights Reserved
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
 *
 ***************************************************************************/

#include "crossbar.h"

#define ASPECT_THRESHOLD .8
#define ADJ 1

Crossbar::Crossbar(
    double n_inp_,
    double n_out_,
    double flit_size_,
    TechnologyParameter::DeviceType *dt
    ):n_inp(n_inp_), n_out(n_out_), flit_size(flit_size_), deviceType(dt)
{
  min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
  Vdd = dt->Vdd;
  CB_ADJ = 1;
}

Crossbar::~Crossbar(){}

double Crossbar::output_buffer()
{

  //Wire winit(4, 4);
  double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch;
  Wire w1(g_ip->wt, l_eff);
  //double s1 = w1.repeater_size *l_eff*ADJ/w1.repeater_spacing;
  double s1 = w1.repeater_size * (l_eff <w1.repeater_spacing?  l_eff *ADJ/w1.repeater_spacing : ADJ);
  double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
  // the model assumes input capacitance of the wire driver = input capacitance of nand + nor = input cap of the driver transistor
  TriS1 = s1*(1 + pton_size)/(2 + pton_size + 1 + 2*pton_size);
  TriS2 = s1; //driver transistor

  if (TriS1 < 1)
    TriS1 = 1;

  double input_cap = gate_C(TriS1*(2*min_w_pmos + g_tp.min_w_nmos_), 0) +
    gate_C(TriS1*(min_w_pmos + 2*g_tp.min_w_nmos_), 0);
//  input_cap += drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
//    drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
//    gate_C(TriS2*g_tp.min_w_nmos_, 0)+
//    drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
//    drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
//    gate_C(TriS2*min_w_pmos, 0);
  tri_int_cap = drain_C_(TriS1*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
    drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
    gate_C(TriS2*g_tp.min_w_nmos_, 0)+
    drain_C_(TriS1*min_w_pmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
    drain_C_(TriS1*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
    gate_C(TriS2*min_w_pmos, 0);
  double output_cap = drain_C_(TriS2*g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
    drain_C_(TriS2*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def);
  double ctr_cap = gate_C(TriS2 *(min_w_pmos + g_tp.min_w_nmos_), 0);

  tri_inp_cap = input_cap;
  tri_out_cap = output_cap;
  tri_ctr_cap = ctr_cap;
  return input_cap + output_cap + ctr_cap;
}

void Crossbar::compute_power()
{

  Wire winit(4, 4);
  double tri_cap = output_buffer();
  assert(tri_cap > 0);
  //area of a tristate logic
  double g_area = compute_gate_area(INV, 1, TriS2*g_tp.min_w_nmos_, TriS2*min_w_pmos, g_tp.cell_h_def);
  g_area *= 2; // to model area of output transistors
  g_area += compute_gate_area (NAND, 2, TriS1*2*g_tp.min_w_nmos_, TriS1*min_w_pmos, g_tp.cell_h_def);
  g_area += compute_gate_area (NOR, 2, TriS1*g_tp.min_w_nmos_, TriS1*2*min_w_pmos, g_tp.cell_h_def);
  double width /*per tristate*/ = g_area/(CB_ADJ * g_tp.cell_h_def);
  // effective no. of tristate buffers that need to be laid side by side
  int ntri = (int)ceil(g_tp.cell_h_def/(g_tp.wire_outside_mat.pitch));
  double wire_len = MAX(width*ntri*n_out, flit_size*g_tp.wire_outside_mat.pitch*n_out);
  Wire w1(g_ip->wt, wire_len);

  area.w = wire_len;
  area.h = g_tp.wire_outside_mat.pitch*n_inp*flit_size * CB_ADJ;
  Wire w2(g_ip->wt, area.h);

  double aspect_ratio_cb = (area.h/area.w)*(n_out/n_inp);
  if (aspect_ratio_cb > 1) aspect_ratio_cb = 1/aspect_ratio_cb;

  if (aspect_ratio_cb < ASPECT_THRESHOLD) {
    if (n_out > 2 && n_inp > 2) {
      CB_ADJ+=0.2;
      //cout << "CB ADJ " << CB_ADJ << endl;
      if (CB_ADJ < 4) {
        this->compute_power();
      }
    }
  }



  power.readOp.dynamic = (w1.power.readOp.dynamic + w2.power.readOp.dynamic + (tri_inp_cap * n_out + tri_out_cap * n_inp + tri_ctr_cap + tri_int_cap) * Vdd*Vdd)*flit_size;
  power.readOp.leakage      =  n_inp * n_out * flit_size * (
    cmos_Isub_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+
        cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+
        cmos_Isub_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+
    w1.power.readOp.leakage + w2.power.readOp.leakage);
  power.readOp.gate_leakage = n_inp * n_out * flit_size * (
          cmos_Ig_leakage(g_tp.min_w_nmos_*TriS2*2, min_w_pmos*TriS2*2, 1, inv) *Vdd+
          cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nand)*Vdd+
          cmos_Ig_leakage(g_tp.min_w_nmos_*TriS1*3, min_w_pmos*TriS1*3, 2, nor) *Vdd+
          w1.power.readOp.gate_leakage + w2.power.readOp.gate_leakage);

  // delay calculation
  double l_eff = n_inp*flit_size*g_tp.wire_outside_mat.pitch;
  Wire wdriver(g_ip->wt, l_eff);
  double res = g_tp.wire_outside_mat.R_per_um * (area.w+area.h) + tr_R_on(g_tp.min_w_nmos_*wdriver.repeater_size, NCH, 1);
  double cap = g_tp.wire_outside_mat.C_per_um * (area.w + area.h) + n_out*tri_inp_cap + n_inp*tri_out_cap;
  delay = horowitz(w1.signal_rise_time(), res*cap, deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);

  Wire wreset();
}

void Crossbar::print_crossbar()
{
  cout << "\nCrossbar Stats (" << n_inp << "x" << n_out << ")\n\n";
  cout << "Flit size        : " << flit_size << " bits" << endl;
  cout << "Width            : " << area.w << " u" << endl;
  cout << "Height           : " << area.h << " u" << endl;
  cout << "Dynamic Power    : " << power.readOp.dynamic*1e9 * MIN(n_inp, n_out) << " (nJ)" << endl;
  cout << "Leakage Power    : " << power.readOp.leakage*1e3 << " (mW)" << endl;
  cout << "Gate Leakage Power    : " << power.readOp.gate_leakage*1e3 << " (mW)" << endl;
  cout << "Crossbar Delay   : " << delay*1e12 << " ps\n";
}