1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
|
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <cassert>
#include "Ucache.h"
#include "nuca.h"
unsigned int MIN_BANKSIZE = 65536;
#define FIXED_OVERHEAD 55e-12 /* clock skew and jitter in s. Ref: Hrishikesh et al ISCA 01 */
#define LATCH_DELAY 28e-12 /* latch delay in s (later should use FO4 TODO) */
#define CONTR_2_BANK_LAT 0
int cont_stats[2 /*l2 or l3*/][5/* cores */][ROUTER_TYPES][7 /*banks*/][8 /* cycle time */];
Nuca::Nuca(
TechnologyParameter::DeviceType *dt = &(g_tp.peri_global)
): deviceType(dt) {
init_cont();
}
void
Nuca::init_cont() {
FILE *cont;
char line[5000];
char jk[5000];
cont = fopen("contention.dat", "r");
if (!cont) {
cout << "contention.dat file is missing!\n";
exit(0);
}
for (int i = 0; i < 2; i++) {
for (int j = 2; j < 5; j++) {
for (int k = 0; k < ROUTER_TYPES; k++) {
for (int l = 0; l < 7; l++) {
int *temp = cont_stats[i/*l2 or l3*/][j/*core*/][k/*64 or 128 or 256 link bw*/][l /* no banks*/];
assert(fscanf(cont, "%[^\n]\n", line) != EOF);
sscanf(line, "%[^:]: %d %d %d %d %d %d %d %d", jk,
&temp[0], &temp[1], &temp[2], &temp[3],
&temp[4], &temp[5], &temp[6], &temp[7]);
}
}
}
}
fclose(cont);
}
void
Nuca::print_cont_stats() {
for (int i = 0; i < 2; i++) {
for (int j = 2; j < 5; j++) {
for (int k = 0; k < ROUTER_TYPES; k++) {
for (int l = 0; l < 7; l++) {
for (int m = 0; l < 7; l++) {
cout << cont_stats[i][j][k][l][m] << " ";
}
cout << endl;
}
}
}
}
cout << endl;
}
Nuca::~Nuca() {
for (int i = wt_min; i <= wt_max; i++) {
delete wire_vertical[i];
delete wire_horizontal[i];
}
}
/* converts latency (in s) to cycles depending upon the FREQUENCY (in GHz) */
int
Nuca::calc_cycles(double lat, double oper_freq) {
//TODO: convert latch delay to FO4 */
double cycle_time = (1.0 / (oper_freq * 1e9)); /*s*/
cycle_time -= LATCH_DELAY;
cycle_time -= FIXED_OVERHEAD;
return (int)ceil(lat / cycle_time);
}
nuca_org_t::~nuca_org_t() {
// if(h_wire) delete h_wire;
// if(v_wire) delete v_wire;
// if(router) delete router;
}
/*
* Version - 6.0
*
* Perform exhaustive search across different bank organizatons,
* router configurations, grid organizations, and wire models and
* find an optimal NUCA organization
* For different bank count values
* 1. Optimal bank organization is calculated
* 2. For each bank organization, find different NUCA organizations
* using various router configurations, grid organizations,
* and wire models.
* 3. NUCA model with the least cost is picked for
* this particular bank count
* Finally include contention statistics and find the optimal
* NUCA configuration
*/
void
Nuca::sim_nuca() {
/* temp variables */
int it, ro, wr;
int num_cyc;
unsigned int i, j, k;
unsigned int r, c;
int l2_c;
int bank_count = 0;
uca_org_t ures;
nuca_org_t *opt_n;
mem_array tag, data;
list<nuca_org_t *> nuca_list;
Router *router_s[ROUTER_TYPES];
router_s[0] = new Router(64.0, 8, 4, &(g_tp.peri_global));
router_s[0]->print_router();
router_s[1] = new Router(128.0, 8, 4, &(g_tp.peri_global));
router_s[1]->print_router();
router_s[2] = new Router(256.0, 8, 4, &(g_tp.peri_global));
router_s[2]->print_router();
int core_in; // to store no. of cores
/* to search diff grid organizations */
double curr_hop, totno_hops, totno_hhops, totno_vhops, tot_lat,
curr_acclat;
double avg_lat, avg_hop, avg_hhop, avg_vhop, avg_dyn_power,
avg_leakage_power;
double opt_acclat = INF, opt_avg_lat = INF, opt_tot_lat = INF;
int opt_rows = 0;
int opt_columns = 0;
double opt_totno_hops = 0;
double opt_avg_hop = 0;
double opt_dyn_power = 0, opt_leakage_power = 0;
min_values_t minval;
int bank_start = 0;
int flit_width = 0;
/* vertical and horizontal hop latency values */
int ver_hop_lat, hor_hop_lat; /* in cycles */
/* no. of different bank sizes to consider */
int iterations;
g_ip->nuca_cache_sz = g_ip->cache_sz;
nuca_list.push_back(new nuca_org_t());
if (g_ip->cache_level == 0) l2_c = 1;
else l2_c = 0;
if (g_ip->cores <= 4) core_in = 2;
else if (g_ip->cores <= 8) core_in = 3;
else if (g_ip->cores <= 16) core_in = 4;
else {
cout << "Number of cores should be <= 16!\n";
exit(0);
}
// set the lower bound to an appropriate value. this depends on cache associativity
if (g_ip->assoc > 2) {
i = 2;
while (i != g_ip->assoc) {
MIN_BANKSIZE *= 2;
i *= 2;
}
}
iterations = (int)logtwo((int)g_ip->cache_sz / MIN_BANKSIZE);
if (g_ip->force_wiretype) {
if (g_ip->wt == Low_swing) {
wt_min = Low_swing;
wt_max = Low_swing;
} else {
wt_min = Global;
wt_max = Low_swing - 1;
}
} else {
wt_min = Global;
wt_max = Low_swing;
}
if (g_ip->nuca_bank_count != 0) { // simulate just one bank
if (g_ip->nuca_bank_count != 2 && g_ip->nuca_bank_count != 4 &&
g_ip->nuca_bank_count != 8 && g_ip->nuca_bank_count != 16 &&
g_ip->nuca_bank_count != 32 && g_ip->nuca_bank_count != 64) {
fprintf(stderr, "Incorrect bank count value! Please fix the ",
"value in cache.cfg\n");
}
bank_start = (int)logtwo((double)g_ip->nuca_bank_count);
iterations = bank_start + 1;
g_ip->cache_sz = g_ip->cache_sz / g_ip->nuca_bank_count;
}
cout << "Simulating various NUCA configurations\n";
for (it = bank_start; it < iterations; it++) {
/* different bank count values */
ures.tag_array2 = &tag;
ures.data_array2 = &data;
/*
* find the optimal bank organization
*/
solve(&ures);
// output_UCA(&ures);
bank_count = g_ip->nuca_cache_sz / g_ip->cache_sz;
cout << "====" << g_ip->cache_sz << "\n";
for (wr = wt_min; wr <= wt_max; wr++) {
for (ro = 0; ro < ROUTER_TYPES; ro++) {
flit_width = (int) router_s[ro]->flit_size; //initialize router
nuca_list.back()->nuca_pda.cycle_time = router_s[ro]->cycle_time;
/* calculate router and wire parameters */
double vlength = ures.cache_ht; /* length of the wire (u)*/
double hlength = ures.cache_len; // u
/* find delay, area, and power for wires */
wire_vertical[wr] = new Wire((enum Wire_type) wr, vlength);
wire_horizontal[wr] = new Wire((enum Wire_type) wr, hlength);
hor_hop_lat =
calc_cycles(wire_horizontal[wr]->delay,
1 /(nuca_list.back()->nuca_pda.cycle_time *
.001));
ver_hop_lat =
calc_cycles(wire_vertical[wr]->delay,
1 / (nuca_list.back()->nuca_pda.cycle_time *
.001));
/*
* assume a grid like topology and explore for optimal network
* configuration using different row and column count values.
*/
for (c = 1; c <= (unsigned int)bank_count; c++) {
while (bank_count % c != 0) c++;
r = bank_count / c;
/*
* to find the avg access latency of a NUCA cache, uncontended
* access time to each bank from the
* cache controller is calculated.
* avg latency =
* sum of the access latencies to individual banks)/bank
* count value.
*/
totno_hops = totno_hhops = totno_vhops = tot_lat = 0;
k = 1;
for (i = 0; i < r; i++) {
for (j = 0; j < c; j++) {
/*
* vertical hops including the
* first hop from the cache controller
*/
curr_hop = i + 1;
curr_hop += j; /* horizontal hops */
totno_hhops += j;
totno_vhops += (i + 1);
curr_acclat = (i * ver_hop_lat + CONTR_2_BANK_LAT +
j * hor_hop_lat);
tot_lat += curr_acclat;
totno_hops += curr_hop;
}
}
avg_lat = tot_lat / bank_count;
avg_hop = totno_hops / bank_count;
avg_hhop = totno_hhops / bank_count;
avg_vhop = totno_vhops / bank_count;
/* net access latency */
curr_acclat = 2 * avg_lat + 2 * (router_s[ro]->delay *
avg_hop) +
calc_cycles(ures.access_time,
1 /
(nuca_list.back()->nuca_pda.cycle_time *
.001));
/* avg access lat of nuca */
avg_dyn_power =
avg_hop *
(router_s[ro]->power.readOp.dynamic) + avg_hhop *
(wire_horizontal[wr]->power.readOp.dynamic) *
(g_ip->block_sz * 8 + 64) + avg_vhop *
(wire_vertical[wr]->power.readOp.dynamic) *
(g_ip->block_sz * 8 + 64) + ures.power.readOp.dynamic;
avg_leakage_power =
bank_count * router_s[ro]->power.readOp.leakage +
avg_hhop * (wire_horizontal[wr]->power.readOp.leakage *
wire_horizontal[wr]->delay) * flit_width +
avg_vhop * (wire_vertical[wr]->power.readOp.leakage *
wire_horizontal[wr]->delay);
if (curr_acclat < opt_acclat) {
opt_acclat = curr_acclat;
opt_tot_lat = tot_lat;
opt_avg_lat = avg_lat;
opt_totno_hops = totno_hops;
opt_avg_hop = avg_hop;
opt_rows = r;
opt_columns = c;
opt_dyn_power = avg_dyn_power;
opt_leakage_power = avg_leakage_power;
}
totno_hops = 0;
tot_lat = 0;
totno_hhops = 0;
totno_vhops = 0;
}
nuca_list.back()->wire_pda.power.readOp.dynamic =
opt_avg_hop * flit_width *
(wire_horizontal[wr]->power.readOp.dynamic +
wire_vertical[wr]->power.readOp.dynamic);
nuca_list.back()->avg_hops = opt_avg_hop;
/* network delay/power */
nuca_list.back()->h_wire = wire_horizontal[wr];
nuca_list.back()->v_wire = wire_vertical[wr];
nuca_list.back()->router = router_s[ro];
/* bank delay/power */
nuca_list.back()->bank_pda.delay = ures.access_time;
nuca_list.back()->bank_pda.power = ures.power;
nuca_list.back()->bank_pda.area.h = ures.cache_ht;
nuca_list.back()->bank_pda.area.w = ures.cache_len;
nuca_list.back()->bank_pda.cycle_time = ures.cycle_time;
num_cyc = calc_cycles(nuca_list.back()->bank_pda.delay /*s*/,
1 /
(nuca_list.back()->nuca_pda.cycle_time *
.001/*GHz*/));
if (num_cyc % 2 != 0) num_cyc++;
if (num_cyc > 16) num_cyc = 16; // we have data only up to 16 cycles
if (it < 7) {
nuca_list.back()->nuca_pda.delay = opt_acclat +
cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
nuca_list.back()->contention =
cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
} else {
nuca_list.back()->nuca_pda.delay = opt_acclat +
cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
nuca_list.back()->contention =
cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
}
nuca_list.back()->nuca_pda.power.readOp.dynamic = opt_dyn_power;
nuca_list.back()->nuca_pda.power.readOp.leakage = opt_leakage_power;
/* array organization */
nuca_list.back()->bank_count = bank_count;
nuca_list.back()->rows = opt_rows;
nuca_list.back()->columns = opt_columns;
calculate_nuca_area (nuca_list.back());
minval.update_min_values(nuca_list.back());
nuca_list.push_back(new nuca_org_t());
opt_acclat = BIGNUM;
}
}
g_ip->cache_sz /= 2;
}
delete(nuca_list.back());
nuca_list.pop_back();
opt_n = find_optimal_nuca(&nuca_list, &minval);
print_nuca(opt_n);
g_ip->cache_sz = g_ip->nuca_cache_sz / opt_n->bank_count;
list<nuca_org_t *>::iterator niter;
for (niter = nuca_list.begin(); niter != nuca_list.end(); ++niter) {
delete *niter;
}
nuca_list.clear();
for (int i = 0; i < ROUTER_TYPES; i++) {
delete router_s[i];
}
g_ip->display_ip();
// g_ip->force_cache_config = true;
// g_ip->ndwl = 8;
// g_ip->ndbl = 16;
// g_ip->nspd = 4;
// g_ip->ndcm = 1;
// g_ip->ndsam1 = 8;
// g_ip->ndsam2 = 32;
}
void
Nuca::print_nuca (nuca_org_t *fr) {
printf("\n---------- CACTI version 6.5, Non-uniform Cache Access "
"----------\n\n");
printf("Optimal number of banks - %d\n", fr->bank_count);
printf("Grid organization rows x columns - %d x %d\n",
fr->rows, fr->columns);
printf("Network frequency - %g GHz\n",
(1 / fr->nuca_pda.cycle_time)*1e3);
printf("Cache dimension (mm x mm) - %g x %g\n",
fr->nuca_pda.area.h,
fr->nuca_pda.area.w);
fr->router->print_router();
printf("\n\nWire stats:\n");
if (fr->h_wire->wt == Global) {
printf("\tWire type - Full swing global wires with least "
"possible delay\n");
} else if (fr->h_wire->wt == Global_5) {
printf("\tWire type - Full swing global wires with "
"5%% delay penalty\n");
} else if (fr->h_wire->wt == Global_10) {
printf("\tWire type - Full swing global wires with "
"10%% delay penalty\n");
} else if (fr->h_wire->wt == Global_20) {
printf("\tWire type - Full swing global wires with "
"20%% delay penalty\n");
} else if (fr->h_wire->wt == Global_30) {
printf("\tWire type - Full swing global wires with "
"30%% delay penalty\n");
} else if (fr->h_wire->wt == Low_swing) {
printf("\tWire type - Low swing wires\n");
}
printf("\tHorizontal link delay - %g (ns)\n",
fr->h_wire->delay*1e9);
printf("\tVertical link delay - %g (ns)\n",
fr->v_wire->delay*1e9);
printf("\tDelay/length - %g (ns/mm)\n",
fr->h_wire->delay*1e9 / fr->bank_pda.area.w);
printf("\tHorizontal link energy -dynamic/access %g (nJ)\n"
"\t -leakage %g (nW)\n\n",
fr->h_wire->power.readOp.dynamic*1e9,
fr->h_wire->power.readOp.leakage*1e9);
printf("\tVertical link energy -dynamic/access %g (nJ)\n"
"\t -leakage %g (nW)\n\n",
fr->v_wire->power.readOp.dynamic*1e9,
fr->v_wire->power.readOp.leakage*1e9);
printf("\n\n");
fr->v_wire->print_wire();
printf("\n\nBank stats:\n");
}
nuca_org_t *
Nuca::find_optimal_nuca (list<nuca_org_t *> *n, min_values_t *minval) {
double cost = 0;
double min_cost = BIGNUM;
nuca_org_t *res = NULL;
float d, a, dp, lp, c;
int v;
dp = g_ip->dynamic_power_wt_nuca;
lp = g_ip->leakage_power_wt_nuca;
a = g_ip->area_wt_nuca;
d = g_ip->delay_wt_nuca;
c = g_ip->cycle_time_wt_nuca;
list<nuca_org_t *>::iterator niter;
for (niter = n->begin(); niter != n->end(); niter++) {
fprintf(stderr, "\n-----------------------------"
"---------------\n");
printf("NUCA___stats %d \tbankcount: lat = %g \tdynP = %g \twt = %d\t "
"bank_dpower = %g \tleak = %g \tcycle = %g\n",
(*niter)->bank_count,
(*niter)->nuca_pda.delay,
(*niter)->nuca_pda.power.readOp.dynamic,
(*niter)->h_wire->wt,
(*niter)->bank_pda.power.readOp.dynamic,
(*niter)->nuca_pda.power.readOp.leakage,
(*niter)->nuca_pda.cycle_time);
if (g_ip->ed == 1) {
cost = ((*niter)->nuca_pda.delay / minval->min_delay) *
((*niter)->nuca_pda.power.readOp.dynamic / minval->min_dyn);
if (min_cost > cost) {
min_cost = cost;
res = ((*niter));
}
} else if (g_ip->ed == 2) {
cost = ((*niter)->nuca_pda.delay / minval->min_delay) *
((*niter)->nuca_pda.delay / minval->min_delay) *
((*niter)->nuca_pda.power.readOp.dynamic / minval->min_dyn);
if (min_cost > cost) {
min_cost = cost;
res = ((*niter));
}
} else {
/*
* check whether the current organization
* meets the input deviation constraints
*/
v = check_nuca_org((*niter), minval);
if (minval->min_leakage == 0) minval->min_leakage = 0.1; //FIXME remove this after leakage modeling
if (v) {
cost = (d * ((*niter)->nuca_pda.delay / minval->min_delay) +
c * ((*niter)->nuca_pda.cycle_time / minval->min_cyc) +
dp * ((*niter)->nuca_pda.power.readOp.dynamic /
minval->min_dyn) +
lp * ((*niter)->nuca_pda.power.readOp.leakage /
minval->min_leakage) +
a * ((*niter)->nuca_pda.area.get_area() /
minval->min_area));
fprintf(stderr, "cost = %g\n", cost);
if (min_cost > cost) {
min_cost = cost;
res = ((*niter));
}
} else {
niter = n->erase(niter);
if (niter != n->begin())
niter --;
}
}
}
return res;
}
int
Nuca::check_nuca_org (nuca_org_t *n, min_values_t *minval) {
if (((n->nuca_pda.delay - minval->min_delay)*100 / minval->min_delay) >
g_ip->delay_dev_nuca) {
return 0;
}
if (((n->nuca_pda.power.readOp.dynamic - minval->min_dyn) /
minval->min_dyn)*100 >
g_ip->dynamic_power_dev_nuca) {
return 0;
}
if (((n->nuca_pda.power.readOp.leakage - minval->min_leakage) /
minval->min_leakage)*100 >
g_ip->leakage_power_dev_nuca) {
return 0;
}
if (((n->nuca_pda.cycle_time - minval->min_cyc) / minval->min_cyc)*100 >
g_ip->cycle_time_dev_nuca) {
return 0;
}
if (((n->nuca_pda.area.get_area() - minval->min_area) / minval->min_area) *
100 >
g_ip->area_dev_nuca) {
return 0;
}
return 1;
}
void
Nuca::calculate_nuca_area (nuca_org_t *nuca) {
nuca->nuca_pda.area.h =
nuca->rows * ((nuca->h_wire->wire_width +
nuca->h_wire->wire_spacing)
* nuca->router->flit_size +
nuca->bank_pda.area.h);
nuca->nuca_pda.area.w =
nuca->columns * ((nuca->v_wire->wire_width +
nuca->v_wire->wire_spacing)
* nuca->router->flit_size +
nuca->bank_pda.area.w);
}
|