1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <iomanip>
#include <iostream>
#include <string>
#include "area.h"
#include "parameter.h"
using namespace std;
InputParameter * g_ip;
TechnologyParameter g_tp;
void TechnologyParameter::DeviceType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "C_g_ideal = " << setw(12) << C_g_ideal << " F/um" << endl;
cout << indent_str << "C_fringe = " << setw(12) << C_fringe << " F/um" << endl;
cout << indent_str << "C_overlap = " << setw(12) << C_overlap << " F/um" << endl;
cout << indent_str << "C_junc = " << setw(12) << C_junc << " F/um^2" << endl;
cout << indent_str << "l_phy = " << setw(12) << l_phy << " um" << endl;
cout << indent_str << "l_elec = " << setw(12) << l_elec << " um" << endl;
cout << indent_str << "R_nch_on = " << setw(12) << R_nch_on << " ohm-um" << endl;
cout << indent_str << "R_pch_on = " << setw(12) << R_pch_on << " ohm-um" << endl;
cout << indent_str << "Vdd = " << setw(12) << Vdd << " V" << endl;
cout << indent_str << "Vth = " << setw(12) << Vth << " V" << endl;
cout << indent_str << "I_on_n = " << setw(12) << I_on_n << " A/um" << endl;
cout << indent_str << "I_on_p = " << setw(12) << I_on_p << " A/um" << endl;
cout << indent_str << "I_off_n = " << setw(12) << I_off_n << " A/um" << endl;
cout << indent_str << "I_off_p = " << setw(12) << I_off_p << " A/um" << endl;
cout << indent_str << "C_ox = " << setw(12) << C_ox << " F/um^2" << endl;
cout << indent_str << "t_ox = " << setw(12) << t_ox << " um" << endl;
cout << indent_str << "n_to_p_eff_curr_drv_ratio = " << n_to_p_eff_curr_drv_ratio << endl;
}
void TechnologyParameter::InterconnectType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "pitch = " << setw(12) << pitch << " um" << endl;
cout << indent_str << "R_per_um = " << setw(12) << R_per_um << " ohm/um" << endl;
cout << indent_str << "C_per_um = " << setw(12) << C_per_um << " F/um" << endl;
}
void TechnologyParameter::ScalingFactor::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "logic_scaling_co_eff = " << setw(12) << logic_scaling_co_eff << endl;
cout << indent_str << "curr_core_tx_density = " << setw(12) << core_tx_density << " # of tx/um^2" << endl;
}
void TechnologyParameter::MemoryType::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "b_w = " << setw(12) << b_w << " um" << endl;
cout << indent_str << "b_h = " << setw(12) << b_h << " um" << endl;
cout << indent_str << "cell_a_w = " << setw(12) << cell_a_w << " um" << endl;
cout << indent_str << "cell_pmos_w = " << setw(12) << cell_pmos_w << " um" << endl;
cout << indent_str << "cell_nmos_w = " << setw(12) << cell_nmos_w << " um" << endl;
cout << indent_str << "Vbitpre = " << setw(12) << Vbitpre << " V" << endl;
}
void TechnologyParameter::display(uint32_t indent) {
string indent_str(indent, ' ');
cout << indent_str << "ram_wl_stitching_overhead_ = " << setw(12) << ram_wl_stitching_overhead_ << " um" << endl;
cout << indent_str << "min_w_nmos_ = " << setw(12) << min_w_nmos_ << " um" << endl;
cout << indent_str << "max_w_nmos_ = " << setw(12) << max_w_nmos_ << " um" << endl;
cout << indent_str << "unit_len_wire_del = " << setw(12) << unit_len_wire_del << " s/um^2" << endl;
cout << indent_str << "FO4 = " << setw(12) << FO4 << " s" << endl;
cout << indent_str << "kinv = " << setw(12) << kinv << " s" << endl;
cout << indent_str << "vpp = " << setw(12) << vpp << " V" << endl;
cout << indent_str << "w_sense_en = " << setw(12) << w_sense_en << " um" << endl;
cout << indent_str << "w_sense_n = " << setw(12) << w_sense_n << " um" << endl;
cout << indent_str << "w_sense_p = " << setw(12) << w_sense_p << " um" << endl;
cout << indent_str << "w_iso = " << setw(12) << w_iso << " um" << endl;
cout << indent_str << "w_poly_contact = " << setw(12) << w_poly_contact << " um" << endl;
cout << indent_str << "spacing_poly_to_poly = " << setw(12) << spacing_poly_to_poly << " um" << endl;
cout << indent_str << "spacing_poly_to_contact = " << setw(12) << spacing_poly_to_contact << " um" << endl;
cout << endl;
cout << indent_str << "w_comp_inv_p1 = " << setw(12) << w_comp_inv_p1 << " um" << endl;
cout << indent_str << "w_comp_inv_p2 = " << setw(12) << w_comp_inv_p2 << " um" << endl;
cout << indent_str << "w_comp_inv_p3 = " << setw(12) << w_comp_inv_p3 << " um" << endl;
cout << indent_str << "w_comp_inv_n1 = " << setw(12) << w_comp_inv_n1 << " um" << endl;
cout << indent_str << "w_comp_inv_n2 = " << setw(12) << w_comp_inv_n2 << " um" << endl;
cout << indent_str << "w_comp_inv_n3 = " << setw(12) << w_comp_inv_n3 << " um" << endl;
cout << indent_str << "w_eval_inv_p = " << setw(12) << w_eval_inv_p << " um" << endl;
cout << indent_str << "w_eval_inv_n = " << setw(12) << w_eval_inv_n << " um" << endl;
cout << indent_str << "w_comp_n = " << setw(12) << w_comp_n << " um" << endl;
cout << indent_str << "w_comp_p = " << setw(12) << w_comp_p << " um" << endl;
cout << endl;
cout << indent_str << "dram_cell_I_on = " << setw(12) << dram_cell_I_on << " A/um" << endl;
cout << indent_str << "dram_cell_Vdd = " << setw(12) << dram_cell_Vdd << " V" << endl;
cout << indent_str << "dram_cell_I_off_worst_case_len_temp = " << setw(12) << dram_cell_I_off_worst_case_len_temp << " A/um" << endl;
cout << indent_str << "dram_cell_C = " << setw(12) << dram_cell_C << " F" << endl;
cout << indent_str << "gm_sense_amp_latch = " << setw(12) << gm_sense_amp_latch << " F/s" << endl;
cout << endl;
cout << indent_str << "w_nmos_b_mux = " << setw(12) << w_nmos_b_mux << " um" << endl;
cout << indent_str << "w_nmos_sa_mux = " << setw(12) << w_nmos_sa_mux << " um" << endl;
cout << indent_str << "w_pmos_bl_precharge = " << setw(12) << w_pmos_bl_precharge << " um" << endl;
cout << indent_str << "w_pmos_bl_eq = " << setw(12) << w_pmos_bl_eq << " um" << endl;
cout << indent_str << "MIN_GAP_BET_P_AND_N_DIFFS = " << setw(12) << MIN_GAP_BET_P_AND_N_DIFFS << " um" << endl;
cout << indent_str << "HPOWERRAIL = " << setw(12) << HPOWERRAIL << " um" << endl;
cout << indent_str << "cell_h_def = " << setw(12) << cell_h_def << " um" << endl;
cout << endl;
cout << indent_str << "SRAM cell transistor: " << endl;
sram_cell.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM access transistor: " << endl;
dram_acc.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM wordline transistor: " << endl;
dram_wl.display(indent + 2);
cout << endl;
cout << indent_str << "peripheral global transistor: " << endl;
peri_global.display(indent + 2);
cout << endl;
cout << indent_str << "wire local" << endl;
wire_local.display(indent + 2);
cout << endl;
cout << indent_str << "wire inside mat" << endl;
wire_inside_mat.display(indent + 2);
cout << endl;
cout << indent_str << "wire outside mat" << endl;
wire_outside_mat.display(indent + 2);
cout << endl;
cout << indent_str << "SRAM" << endl;
sram.display(indent + 2);
cout << endl;
cout << indent_str << "DRAM" << endl;
dram.display(indent + 2);
}
DynamicParameter::DynamicParameter():
use_inp_params(0), cell(), is_valid(true) {
}
DynamicParameter::DynamicParameter(
bool is_tag_,
int pure_ram_,
int pure_cam_,
double Nspd_,
unsigned int Ndwl_,
unsigned int Ndbl_,
unsigned int Ndcm_,
unsigned int Ndsam_lev_1_,
unsigned int Ndsam_lev_2_,
bool is_main_mem_):
is_tag(is_tag_), pure_ram(pure_ram_), pure_cam(pure_cam_), tagbits(0),
Nspd(Nspd_), Ndwl(Ndwl_), Ndbl(Ndbl_), Ndcm(Ndcm_),
Ndsam_lev_1(Ndsam_lev_1_), Ndsam_lev_2(Ndsam_lev_2_),
number_way_select_signals_mat(0), V_b_sense(0), use_inp_params(0),
is_main_mem(is_main_mem_), cell(), is_valid(false) {
ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
is_dram = ((ram_cell_tech_type == lp_dram) || (ram_cell_tech_type == comm_dram));
unsigned int capacity_per_die = g_ip->cache_sz / NUMBER_STACKED_DIE_LAYERS; // capacity per stacked die layer
const TechnologyParameter::InterconnectType & wire_local = g_tp.wire_local;
fully_assoc = (g_ip->fully_assoc) ? true : false;
// fully-assocative cache -- ref: CACTi 2.0 report
if (fully_assoc || pure_cam) {
if (Ndwl != 1 || //Ndwl is fixed to 1 for FA
Ndcm != 1 || //Ndcm is fixed to 1 for FA
Nspd < 1 || Nspd > 1 || //Nspd is fixed to 1 for FA
Ndsam_lev_1 != 1 || //Ndsam_lev_1 is fixed to one
Ndsam_lev_2 != 1 || //Ndsam_lev_2 is fixed to one
Ndbl < 2) {
return;
}
}
if ((is_dram) && (!is_tag) && (Ndcm > 1)) {
return; // For a DRAM array, each bitline has its own sense-amp
}
// If it's not an FA tag/data array, Ndwl should be at least two and Ndbl should be
// at least two because an array is assumed to have at least one mat. And a mat
// is formed out of two horizontal subarrays and two vertical subarrays
if (fully_assoc == false && (Ndwl < 1 || Ndbl < 1)) {
return;
}
//***********compute row, col of an subarray
if (!(fully_assoc || pure_cam)) {
//Not fully_asso nor cam
// if data array, let tagbits = 0
if (is_tag) {
if (g_ip->specific_tag) {
tagbits = g_ip->tag_w;
} else {
tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(capacity_per_die) +
_log2(g_ip->tag_assoc * 2 - 1) - _log2(g_ip->nbanks);
}
tagbits = (((tagbits + 3) >> 2) << 2);
num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
g_ip->block_sz * g_ip->tag_assoc * Ndbl * Nspd));// + EPSILON);
num_c_subarray = (int)ceil((tagbits * g_ip->tag_assoc * Nspd / Ndwl));// + EPSILON);
//burst_length = 1;
} else {
num_r_subarray = (int)ceil(capacity_per_die / (g_ip->nbanks *
g_ip->block_sz * g_ip->data_assoc * Ndbl * Nspd));// + EPSILON);
num_c_subarray = (int)ceil((8 * g_ip->block_sz * g_ip->data_assoc * Nspd / Ndwl));// + EPSILON); + EPSILON);
// burst_length = g_ip->block_sz * 8 / g_ip->out_w;
}
if (num_r_subarray < MINSUBARRAYROWS) return;
if (num_r_subarray == 0) return;
if (num_r_subarray > MAXSUBARRAYROWS) return;
if (num_c_subarray < MINSUBARRAYCOLS) return;
if (num_c_subarray > MAXSUBARRAYCOLS) return;
}
else {//either fully-asso or cam
if (pure_cam) {
if (g_ip->specific_tag) {
tagbits = int(ceil(g_ip->tag_w / 8.0) * 8);
} else {
tagbits = int(ceil((ADDRESS_BITS + EXTRA_TAG_BITS) / 8.0) * 8);
// cout<<"Pure CAM needs tag width to be specified"<<endl;
// exit(0);
}
//tagbits = (((tagbits + 3) >> 2) << 2);
//TODO: error check input of tagbits and blocksize
//TODO: for pure CAM, g_ip->block should be number of entries.
tag_num_r_subarray = (int)ceil(capacity_per_die /
(g_ip->nbanks * tagbits / 8.0 * Ndbl));
//tag_num_c_subarray = (int)(tagbits + EPSILON);
tag_num_c_subarray = tagbits;
if (tag_num_r_subarray == 0) return;
if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
num_r_subarray = tag_num_r_subarray;
} else { //fully associative
if (g_ip->specific_tag) {
tagbits = g_ip->tag_w;
} else {
tagbits = ADDRESS_BITS + EXTRA_TAG_BITS - _log2(g_ip->block_sz);//TODO: should be the page_offset=log2(page size), but this info is not avail with CACTI, for McPAT this is no problem.
}
tagbits = (((tagbits + 3) >> 2) << 2);
tag_num_r_subarray = (int)(capacity_per_die /
(g_ip->nbanks * g_ip->block_sz * Ndbl));
tag_num_c_subarray = (int)ceil((tagbits * Nspd / Ndwl));// + EPSILON);
if (tag_num_r_subarray == 0) return;
if (tag_num_r_subarray > MAXSUBARRAYROWS) return;
if (tag_num_c_subarray < MINSUBARRAYCOLS) return;
if (tag_num_c_subarray > MAXSUBARRAYCOLS) return;
data_num_r_subarray = tag_num_r_subarray;
data_num_c_subarray = 8 * g_ip->block_sz;
if (data_num_r_subarray == 0) return;
if (data_num_r_subarray > MAXSUBARRAYROWS) return;
if (data_num_c_subarray < MINSUBARRAYCOLS) return;
if (data_num_c_subarray > MAXSUBARRAYCOLS) return;
num_r_subarray = tag_num_r_subarray;
}
}
num_subarrays = Ndwl * Ndbl;
//****************end of computation of row, col of an subarray
// calculate wire parameters
if (fully_assoc || pure_cam) {
cam_cell.h = g_tp.cam.b_h + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1) +
wire_local.pitch * g_ip->num_se_rd_ports;
cam_cell.w = g_tp.cam.b_w + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + g_ip->num_rd_ports + g_ip->num_wr_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1) +
wire_local.pitch * g_ip->num_se_rd_ports;
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch *
(g_ip->num_wr_ports + g_ip->num_rw_ports - 1 + g_ip->num_rd_ports)
+ 2 * wire_local.pitch * (g_ip->num_search_ports - 1);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch *
(g_ip->num_rw_ports - 1 + (g_ip->num_rd_ports -
g_ip->num_se_rd_ports)
+ g_ip->num_wr_ports) + g_tp.wire_local.pitch *
g_ip->num_se_rd_ports + 2 * wire_local.pitch *
(g_ip->num_search_ports - 1);
} else {
if (is_tag) {
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_rd_ports +
g_ip->num_wr_ports);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 + g_ip->num_wr_ports +
(g_ip->num_rd_ports - g_ip->num_se_rd_ports)) +
wire_local.pitch * g_ip->num_se_rd_ports;
} else {
if (is_dram) {
cell.h = g_tp.dram.b_h;
cell.w = g_tp.dram.b_w;
} else {
cell.h = g_tp.sram.b_h + 2 * wire_local.pitch * (g_ip->num_wr_ports +
g_ip->num_rw_ports - 1 + g_ip->num_rd_ports);
cell.w = g_tp.sram.b_w + 2 * wire_local.pitch * (g_ip->num_rw_ports - 1 +
(g_ip->num_rd_ports - g_ip->num_se_rd_ports) +
g_ip->num_wr_ports) + g_tp.wire_local.pitch * g_ip->num_se_rd_ports;
}
}
}
double c_b_metal = cell.h * wire_local.C_per_um;
double C_bl;
if (!(fully_assoc || pure_cam)) {
if (is_dram) {
deg_bl_muxing = 1;
if (ram_cell_tech_type == comm_dram) {
C_bl = num_r_subarray * c_b_metal;
V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C /
(g_tp.dram_cell_C + C_bl);
if (V_b_sense < VBITSENSEMIN) {
return;
}
V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
dram_refresh_period = 64e-3;
} else {
double Cbitrow_drain_cap = drain_C_(g_tp.dram.cell_a_w, NCH, 1, 0, cell.w, true, true) / 2.0;
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
V_b_sense = (g_tp.dram_cell_Vdd / 2) * g_tp.dram_cell_C /
(g_tp.dram_cell_C + C_bl);
if (V_b_sense < VBITSENSEMIN) {
return; //Sense amp input signal is smaller that minimum allowable sense amp input signal
}
V_b_sense = VBITSENSEMIN; // in any case, we fix sense amp input signal to a constant value
//v_storage_worst = g_tp.dram_cell_Vdd / 2 - VBITSENSEMIN * (g_tp.dram_cell_C + C_bl) / g_tp.dram_cell_C;
//dram_refresh_period = 1.1 * g_tp.dram_cell_C * v_storage_worst / g_tp.dram_cell_I_off_worst_case_len_temp;
dram_refresh_period = 0.9 * g_tp.dram_cell_C * VDD_STORAGE_LOSS_FRACTION_WORST * g_tp.dram_cell_Vdd / g_tp.dram_cell_I_off_worst_case_len_temp;
}
} else { //SRAM
V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
deg_bl_muxing = Ndcm;
// "/ 2.0" below is due to the fact that two adjacent access transistors share drain
// contacts in a physical layout
double Cbitrow_drain_cap = drain_C_(g_tp.sram.cell_a_w, NCH, 1, 0, cell.w, false, true) / 2.0;
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
dram_refresh_period = 0;
}
} else {
c_b_metal = cam_cell.h * wire_local.C_per_um;//IBM and SUN design, SRAM array uses dummy cells to fill the blank space due to mismatch on CAM-RAM
V_b_sense = (0.05 * g_tp.sram_cell.Vdd > VBITSENSEMIN) ? 0.05 * g_tp.sram_cell.Vdd : VBITSENSEMIN;
deg_bl_muxing = 1;//FA fix as 1
// "/ 2.0" below is due to the fact that two adjacent access transistors share drain
// contacts in a physical layout
double Cbitrow_drain_cap = drain_C_(g_tp.cam.cell_a_w, NCH, 1, 0, cam_cell.w, false, true) / 2.0;//TODO: comment out these two lines
C_bl = num_r_subarray * (Cbitrow_drain_cap + c_b_metal);
dram_refresh_period = 0;
}
// do/di: data in/out, for fully associative they are the data width for normal read and write
// so/si: search data in/out, for fully associative they are the data width for the search ops
// for CAM, si=di, but so = matching address. do = data out = di (for normal read/write)
// so/si needs broadcase while do/di do not
if (fully_assoc || pure_cam) {
switch (Ndbl) {
case (0):
cout << " Invalid Ndbl \n" << endl;
exit(0);
break;
case (1):
num_mats_h_dir = 1;//one subarray per mat
num_mats_v_dir = 1;
break;
case (2):
num_mats_h_dir = 1;//two subarrays per mat
num_mats_v_dir = 1;
break;
default:
num_mats_h_dir = int(floor(sqrt(Ndbl / 4.0)));//4 subbarrys per mat
num_mats_v_dir = int(Ndbl / 4.0 / num_mats_h_dir);
}
num_mats = num_mats_h_dir * num_mats_v_dir;
if (fully_assoc) {
num_so_b_mat = data_num_c_subarray;
num_do_b_mat = data_num_c_subarray + tagbits;
} else {
num_so_b_mat = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
num_do_b_mat = tagbits;
}
} else {
num_mats_h_dir = MAX(Ndwl / 2, 1);
num_mats_v_dir = MAX(Ndbl / 2, 1);
num_mats = num_mats_h_dir * num_mats_v_dir;
num_do_b_mat = MAX((num_subarrays / num_mats) * num_c_subarray /
(deg_bl_muxing * Ndsam_lev_1 * Ndsam_lev_2), 1);
}
if (!(fully_assoc || pure_cam) && (num_do_b_mat <
(num_subarrays / num_mats))) {
return;
}
int deg_sa_mux_l1_non_assoc;
//TODO:the i/o for subbank is not necessary and should be removed.
if (!(fully_assoc || pure_cam)) {
if (!is_tag) {
if (is_main_mem == true) {
num_do_b_subbank = g_ip->int_prefetch_w * g_ip->out_w;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
} else {
if (g_ip->fast_access == true) {
num_do_b_subbank = g_ip->out_w * g_ip->data_assoc;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
} else {
num_do_b_subbank = g_ip->out_w;
deg_sa_mux_l1_non_assoc = Ndsam_lev_1 / g_ip->data_assoc;
if (deg_sa_mux_l1_non_assoc < 1) {
return;
}
}
}
} else {
num_do_b_subbank = tagbits * g_ip->tag_assoc;
if (num_do_b_mat < tagbits) {
return;
}
deg_sa_mux_l1_non_assoc = Ndsam_lev_1;
//num_do_b_mat = g_ip->tag_assoc / num_mats_h_dir;
}
} else {
if (fully_assoc) {
num_so_b_subbank = 8 * g_ip->block_sz;//TODO:internal perfetch should be considered also for fa
num_do_b_subbank = num_so_b_subbank + tag_num_c_subarray;
} else {
num_so_b_subbank = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));//the address contains the matched data
num_do_b_subbank = tag_num_c_subarray;
}
deg_sa_mux_l1_non_assoc = 1;
}
deg_senseamp_muxing_non_associativity = deg_sa_mux_l1_non_assoc;
if (fully_assoc || pure_cam) {
num_act_mats_hor_dir = 1;
num_act_mats_hor_dir_sl = num_mats_h_dir;//TODO: this is unnecessary, since search op, num_mats is used
} else {
num_act_mats_hor_dir = num_do_b_subbank / num_do_b_mat;
if (num_act_mats_hor_dir == 0) {
return;
}
}
//compute num_do_mat for tag
if (is_tag) {
if (!(fully_assoc || pure_cam)) {
num_do_b_mat = g_ip->tag_assoc / num_act_mats_hor_dir;
num_do_b_subbank = num_act_mats_hor_dir * num_do_b_mat;
}
}
if ((g_ip->is_cache == false && is_main_mem == true) ||
(PAGE_MODE == 1 && is_dram)) {
if (num_act_mats_hor_dir * num_do_b_mat * Ndsam_lev_1 * Ndsam_lev_2 !=
(int)g_ip->page_sz_bits) {
return;
}
}
// if (is_tag == false && g_ip->is_cache == true && !fully_assoc && !pure_cam && //TODO: TODO burst transfer should also apply to RAM arrays
if (is_tag == false && g_ip->is_main_mem == true &&
num_act_mats_hor_dir*num_do_b_mat*Ndsam_lev_1*Ndsam_lev_2 <
((int) g_ip->out_w * (int) g_ip->burst_len * (int) g_ip->data_assoc)) {
return;
}
if (num_act_mats_hor_dir > num_mats_h_dir) {
return;
}
//compute di for mat subbank and bank
if (!(fully_assoc || pure_cam)) {
if (!is_tag) {
if (g_ip->fast_access == true) {
num_di_b_mat = num_do_b_mat / g_ip->data_assoc;
} else {
num_di_b_mat = num_do_b_mat;
}
} else {
num_di_b_mat = tagbits;
}
} else {
if (fully_assoc) {
num_di_b_mat = num_do_b_mat;
//*num_subarrays/num_mats; bits per mat of CAM/FA is as same as cache,
//but inside the mat wire tracks need to be reserved for search data bus
num_si_b_mat = tagbits;
} else {
num_di_b_mat = tagbits;
num_si_b_mat = tagbits;//*num_subarrays/num_mats;
}
}
num_di_b_subbank = num_di_b_mat * num_act_mats_hor_dir;//normal cache or normal r/w for FA
num_si_b_subbank = num_si_b_mat; //* num_act_mats_hor_dir_sl; inside the data is broadcast
int num_addr_b_row_dec = _log2(num_r_subarray);
if ((fully_assoc || pure_cam))
num_addr_b_row_dec += _log2(num_subarrays / num_mats);
int number_subbanks = num_mats / num_act_mats_hor_dir;
number_subbanks_decode = _log2(number_subbanks);//TODO: add log2(num_subarray_per_bank) to FA/CAM
num_rw_ports = g_ip->num_rw_ports;
num_rd_ports = g_ip->num_rd_ports;
num_wr_ports = g_ip->num_wr_ports;
num_se_rd_ports = g_ip->num_se_rd_ports;
num_search_ports = g_ip->num_search_ports;
if (is_dram && is_main_mem) {
number_addr_bits_mat = MAX((unsigned int) num_addr_b_row_dec,
_log2(deg_bl_muxing) + _log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2));
} else {
number_addr_bits_mat = num_addr_b_row_dec + _log2(deg_bl_muxing) +
_log2(deg_sa_mux_l1_non_assoc) + _log2(Ndsam_lev_2);
}
if (!(fully_assoc || pure_cam)) {
if (is_tag) {
num_di_b_bank_per_port = tagbits;
num_do_b_bank_per_port = g_ip->data_assoc;
} else {
num_di_b_bank_per_port = g_ip->out_w + g_ip->data_assoc;
num_do_b_bank_per_port = g_ip->out_w;
}
} else {
if (fully_assoc) {
num_di_b_bank_per_port = g_ip->out_w + tagbits;//TODO: out_w or block_sz?
num_si_b_bank_per_port = tagbits;
num_do_b_bank_per_port = g_ip->out_w + tagbits;
num_so_b_bank_per_port = g_ip->out_w;
} else {
num_di_b_bank_per_port = tagbits;
num_si_b_bank_per_port = tagbits;
num_do_b_bank_per_port = tagbits;
num_so_b_bank_per_port = int(ceil(log2(num_r_subarray)) + ceil(log2(num_subarrays)));
}
}
if ((!is_tag) && (g_ip->data_assoc > 1) && (!g_ip->fast_access)) {
number_way_select_signals_mat = g_ip->data_assoc;
}
// add ECC adjustment to all data signals that traverse on H-trees.
if (g_ip->add_ecc_b_ == true) {
num_do_b_mat += (int) (ceil(num_do_b_mat / num_bits_per_ecc_b_));
num_di_b_mat += (int) (ceil(num_di_b_mat / num_bits_per_ecc_b_));
num_di_b_subbank += (int) (ceil(num_di_b_subbank / num_bits_per_ecc_b_));
num_do_b_subbank += (int) (ceil(num_do_b_subbank / num_bits_per_ecc_b_));
num_di_b_bank_per_port += (int) (ceil(num_di_b_bank_per_port / num_bits_per_ecc_b_));
num_do_b_bank_per_port += (int) (ceil(num_do_b_bank_per_port / num_bits_per_ecc_b_));
num_so_b_mat += (int) (ceil(num_so_b_mat / num_bits_per_ecc_b_));
num_si_b_mat += (int) (ceil(num_si_b_mat / num_bits_per_ecc_b_));
num_si_b_subbank += (int) (ceil(num_si_b_subbank / num_bits_per_ecc_b_));
num_so_b_subbank += (int) (ceil(num_so_b_subbank / num_bits_per_ecc_b_));
num_si_b_bank_per_port += (int) (ceil(num_si_b_bank_per_port / num_bits_per_ecc_b_));
num_so_b_bank_per_port += (int) (ceil(num_so_b_bank_per_port / num_bits_per_ecc_b_));
}
is_valid = true;
}
|