summaryrefslogtreecommitdiff
path: root/ext/pybind11/docs/advanced/cast/stl.rst
blob: c76da5ca1fc573f7b5a4f69072b9da7c7dc64bd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
STL containers
##############

Automatic conversion
====================

When including the additional header file :file:`pybind11/stl.h`, conversions
between ``std::vector<>``/``std::list<>``/``std::array<>``,
``std::set<>``/``std::unordered_set<>``, and
``std::map<>``/``std::unordered_map<>`` and the Python ``list``, ``set`` and
``dict`` data structures are automatically enabled. The types ``std::pair<>``
and ``std::tuple<>`` are already supported out of the box with just the core
:file:`pybind11/pybind11.h` header.

The major downside of these implicit conversions is that containers must be
converted (i.e. copied) on every Python->C++ and C++->Python transition, which
can have implications on the program semantics and performance. Please read the
next sections for more details and alternative approaches that avoid this.

.. note::

    Arbitrary nesting of any of these types is possible.

.. seealso::

    The file :file:`tests/test_python_types.cpp` contains a complete
    example that demonstrates how to pass STL data types in more detail.

.. _opaque:

Making opaque types
===================

pybind11 heavily relies on a template matching mechanism to convert parameters
and return values that are constructed from STL data types such as vectors,
linked lists, hash tables, etc. This even works in a recursive manner, for
instance to deal with lists of hash maps of pairs of elementary and custom
types, etc.

However, a fundamental limitation of this approach is that internal conversions
between Python and C++ types involve a copy operation that prevents
pass-by-reference semantics. What does this mean?

Suppose we bind the following function

.. code-block:: cpp

    void append_1(std::vector<int> &v) {
       v.push_back(1);
    }

and call it from Python, the following happens:

.. code-block:: pycon

   >>> v = [5, 6]
   >>> append_1(v)
   >>> print(v)
   [5, 6]

As you can see, when passing STL data structures by reference, modifications
are not propagated back the Python side. A similar situation arises when
exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
functions:

.. code-block:: cpp

    /* ... definition ... */

    class MyClass {
        std::vector<int> contents;
    };

    /* ... binding code ... */

    py::class_<MyClass>(m, "MyClass")
        .def(py::init<>())
        .def_readwrite("contents", &MyClass::contents);

In this case, properties can be read and written in their entirety. However, an
``append`` operation involving such a list type has no effect:

.. code-block:: pycon

   >>> m = MyClass()
   >>> m.contents = [5, 6]
   >>> print(m.contents)
   [5, 6]
   >>> m.contents.append(7)
   >>> print(m.contents)
   [5, 6]

Finally, the involved copy operations can be costly when dealing with very
large lists. To deal with all of the above situations, pybind11 provides a
macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
conversion machinery of types, thus rendering them *opaque*. The contents of
opaque objects are never inspected or extracted, hence they *can* be passed by
reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
the declaration

.. code-block:: cpp

    PYBIND11_MAKE_OPAQUE(std::vector<int>);

before any binding code (e.g. invocations to ``class_::def()``, etc.). This
macro must be specified at the top level (and outside of any namespaces), since
it instantiates a partial template overload. If your binding code consists of
multiple compilation units, it must be present in every file preceding any
usage of ``std::vector<int>``. Opaque types must also have a corresponding
``class_`` declaration to associate them with a name in Python, and to define a
set of available operations, e.g.:

.. code-block:: cpp

    py::class_<std::vector<int>>(m, "IntVector")
        .def(py::init<>())
        .def("clear", &std::vector<int>::clear)
        .def("pop_back", &std::vector<int>::pop_back)
        .def("__len__", [](const std::vector<int> &v) { return v.size(); })
        .def("__iter__", [](std::vector<int> &v) {
           return py::make_iterator(v.begin(), v.end());
        }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
        // ....

The ability to expose STL containers as native Python objects is a fairly
common request, hence pybind11 also provides an optional header file named
:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
to match the behavior of their native Python counterparts as much as possible.

The following example showcases usage of :file:`pybind11/stl_bind.h`:

.. code-block:: cpp

    // Don't forget this
    #include <pybind11/stl_bind.h>

    PYBIND11_MAKE_OPAQUE(std::vector<int>);
    PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);

    // ...

    // later in binding code:
    py::bind_vector<std::vector<int>>(m, "VectorInt");
    py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");

Please take a look at the :ref:`macro_notes` before using the
``PYBIND11_MAKE_OPAQUE`` macro.

.. seealso::

    The file :file:`tests/test_opaque_types.cpp` contains a complete
    example that demonstrates how to create and expose opaque types using
    pybind11 in more detail.

    The file :file:`tests/test_stl_binders.cpp` shows how to use the
    convenience STL container wrappers.