summaryrefslogtreecommitdiff
path: root/ext/pybind11/include/pybind11/cast.h
blob: eab904bee006838381742a618d3e7e7ca4d3c728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
/*
    pybind11/cast.h: Partial template specializations to cast between
    C++ and Python types

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "pytypes.h"
#include "detail/typeid.h"
#include "detail/descr.h"
#include "detail/internals.h"
#include <array>
#include <limits>
#include <tuple>

#if defined(PYBIND11_CPP17)
#  if defined(__has_include)
#    if __has_include(<string_view>)
#      define PYBIND11_HAS_STRING_VIEW
#    endif
#  elif defined(_MSC_VER)
#    define PYBIND11_HAS_STRING_VIEW
#  endif
#endif
#ifdef PYBIND11_HAS_STRING_VIEW
#include <string_view>
#endif

NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)

/// A life support system for temporary objects created by `type_caster::load()`.
/// Adding a patient will keep it alive up until the enclosing function returns.
class loader_life_support {
public:
    /// A new patient frame is created when a function is entered
    loader_life_support() {
        get_internals().loader_patient_stack.push_back(nullptr);
    }

    /// ... and destroyed after it returns
    ~loader_life_support() {
        auto &stack = get_internals().loader_patient_stack;
        if (stack.empty())
            pybind11_fail("loader_life_support: internal error");

        auto ptr = stack.back();
        stack.pop_back();
        Py_CLEAR(ptr);

        // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
        if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
            stack.shrink_to_fit();
    }

    /// This can only be used inside a pybind11-bound function, either by `argument_loader`
    /// at argument preparation time or by `py::cast()` at execution time.
    PYBIND11_NOINLINE static void add_patient(handle h) {
        auto &stack = get_internals().loader_patient_stack;
        if (stack.empty())
            throw cast_error("When called outside a bound function, py::cast() cannot "
                             "do Python -> C++ conversions which require the creation "
                             "of temporary values");

        auto &list_ptr = stack.back();
        if (list_ptr == nullptr) {
            list_ptr = PyList_New(1);
            if (!list_ptr)
                pybind11_fail("loader_life_support: error allocating list");
            PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
        } else {
            auto result = PyList_Append(list_ptr, h.ptr());
            if (result == -1)
                pybind11_fail("loader_life_support: error adding patient");
        }
    }
};

// Gets the cache entry for the given type, creating it if necessary.  The return value is the pair
// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
// just created.
inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);

// Populates a just-created cache entry.
PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
    std::vector<PyTypeObject *> check;
    for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
        check.push_back((PyTypeObject *) parent.ptr());

    auto const &type_dict = get_internals().registered_types_py;
    for (size_t i = 0; i < check.size(); i++) {
        auto type = check[i];
        // Ignore Python2 old-style class super type:
        if (!PyType_Check((PyObject *) type)) continue;

        // Check `type` in the current set of registered python types:
        auto it = type_dict.find(type);
        if (it != type_dict.end()) {
            // We found a cache entry for it, so it's either pybind-registered or has pre-computed
            // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
            // want to follow Python/virtual C++ rules that there should only be one instance of a
            // common base.
            for (auto *tinfo : it->second) {
                // NB: Could use a second set here, rather than doing a linear search, but since
                // having a large number of immediate pybind11-registered types seems fairly
                // unlikely, that probably isn't worthwhile.
                bool found = false;
                for (auto *known : bases) {
                    if (known == tinfo) { found = true; break; }
                }
                if (!found) bases.push_back(tinfo);
            }
        }
        else if (type->tp_bases) {
            // It's some python type, so keep follow its bases classes to look for one or more
            // registered types
            if (i + 1 == check.size()) {
                // When we're at the end, we can pop off the current element to avoid growing
                // `check` when adding just one base (which is typical--i.e. when there is no
                // multiple inheritance)
                check.pop_back();
                i--;
            }
            for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
                check.push_back((PyTypeObject *) parent.ptr());
        }
    }
}

/**
 * Extracts vector of type_info pointers of pybind-registered roots of the given Python type.  Will
 * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
 * derived class that uses single inheritance.  Will contain as many types as required for a Python
 * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
 * pybind-registered classes.  Will be empty if neither the type nor any base classes are
 * pybind-registered.
 *
 * The value is cached for the lifetime of the Python type.
 */
inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
    auto ins = all_type_info_get_cache(type);
    if (ins.second)
        // New cache entry: populate it
        all_type_info_populate(type, ins.first->second);

    return ins.first->second;
}

/**
 * Gets a single pybind11 type info for a python type.  Returns nullptr if neither the type nor any
 * ancestors are pybind11-registered.  Throws an exception if there are multiple bases--use
 * `all_type_info` instead if you want to support multiple bases.
 */
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
    auto &bases = all_type_info(type);
    if (bases.size() == 0)
        return nullptr;
    if (bases.size() > 1)
        pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
    return bases.front();
}

inline detail::type_info *get_local_type_info(const std::type_index &tp) {
    auto &locals = registered_local_types_cpp();
    auto it = locals.find(tp);
    if (it != locals.end())
        return it->second;
    return nullptr;
}

inline detail::type_info *get_global_type_info(const std::type_index &tp) {
    auto &types = get_internals().registered_types_cpp;
    auto it = types.find(tp);
    if (it != types.end())
        return it->second;
    return nullptr;
}

/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
                                                          bool throw_if_missing = false) {
    if (auto ltype = get_local_type_info(tp))
        return ltype;
    if (auto gtype = get_global_type_info(tp))
        return gtype;

    if (throw_if_missing) {
        std::string tname = tp.name();
        detail::clean_type_id(tname);
        pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
    }
    return nullptr;
}

PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
    detail::type_info *type_info = get_type_info(tp, throw_if_missing);
    return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
}

struct value_and_holder {
    instance *inst;
    size_t index;
    const detail::type_info *type;
    void **vh;

    // Main constructor for a found value/holder:
    value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
        inst{i}, index{index}, type{type},
        vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
    {}

    // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
    value_and_holder() : inst{nullptr} {}

    // Used for past-the-end iterator
    value_and_holder(size_t index) : index{index} {}

    template <typename V = void> V *&value_ptr() const {
        return reinterpret_cast<V *&>(vh[0]);
    }
    // True if this `value_and_holder` has a non-null value pointer
    explicit operator bool() const { return value_ptr(); }

    template <typename H> H &holder() const {
        return reinterpret_cast<H &>(vh[1]);
    }
    bool holder_constructed() const {
        return inst->simple_layout
            ? inst->simple_holder_constructed
            : inst->nonsimple.status[index] & instance::status_holder_constructed;
    }
    void set_holder_constructed(bool v = true) {
        if (inst->simple_layout)
            inst->simple_holder_constructed = v;
        else if (v)
            inst->nonsimple.status[index] |= instance::status_holder_constructed;
        else
            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
    }
    bool instance_registered() const {
        return inst->simple_layout
            ? inst->simple_instance_registered
            : inst->nonsimple.status[index] & instance::status_instance_registered;
    }
    void set_instance_registered(bool v = true) {
        if (inst->simple_layout)
            inst->simple_instance_registered = v;
        else if (v)
            inst->nonsimple.status[index] |= instance::status_instance_registered;
        else
            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
    }
};

// Container for accessing and iterating over an instance's values/holders
struct values_and_holders {
private:
    instance *inst;
    using type_vec = std::vector<detail::type_info *>;
    const type_vec &tinfo;

public:
    values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}

    struct iterator {
    private:
        instance *inst;
        const type_vec *types;
        value_and_holder curr;
        friend struct values_and_holders;
        iterator(instance *inst, const type_vec *tinfo)
            : inst{inst}, types{tinfo},
            curr(inst /* instance */,
                 types->empty() ? nullptr : (*types)[0] /* type info */,
                 0, /* vpos: (non-simple types only): the first vptr comes first */
                 0 /* index */)
        {}
        // Past-the-end iterator:
        iterator(size_t end) : curr(end) {}
    public:
        bool operator==(const iterator &other) { return curr.index == other.curr.index; }
        bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
        iterator &operator++() {
            if (!inst->simple_layout)
                curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
            ++curr.index;
            curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
            return *this;
        }
        value_and_holder &operator*() { return curr; }
        value_and_holder *operator->() { return &curr; }
    };

    iterator begin() { return iterator(inst, &tinfo); }
    iterator end() { return iterator(tinfo.size()); }

    iterator find(const type_info *find_type) {
        auto it = begin(), endit = end();
        while (it != endit && it->type != find_type) ++it;
        return it;
    }

    size_t size() { return tinfo.size(); }
};

/**
 * Extracts C++ value and holder pointer references from an instance (which may contain multiple
 * values/holders for python-side multiple inheritance) that match the given type.  Throws an error
 * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance.  If
 * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
 * regardless of type (and the resulting .type will be nullptr).
 *
 * The returned object should be short-lived: in particular, it must not outlive the called-upon
 * instance.
 */
PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
    // Optimize common case:
    if (!find_type || Py_TYPE(this) == find_type->type)
        return value_and_holder(this, find_type, 0, 0);

    detail::values_and_holders vhs(this);
    auto it = vhs.find(find_type);
    if (it != vhs.end())
        return *it;

    if (!throw_if_missing)
        return value_and_holder();

#if defined(NDEBUG)
    pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
            "type is not a pybind11 base of the given instance "
            "(compile in debug mode for type details)");
#else
    pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
            std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
            std::string(Py_TYPE(this)->tp_name) + "' instance");
#endif
}

PYBIND11_NOINLINE inline void instance::allocate_layout() {
    auto &tinfo = all_type_info(Py_TYPE(this));

    const size_t n_types = tinfo.size();

    if (n_types == 0)
        pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");

    simple_layout =
        n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();

    // Simple path: no python-side multiple inheritance, and a small-enough holder
    if (simple_layout) {
        simple_value_holder[0] = nullptr;
        simple_holder_constructed = false;
        simple_instance_registered = false;
    }
    else { // multiple base types or a too-large holder
        // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
        // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
        // values that tracks whether each associated holder has been initialized.  Each [block] is
        // padded, if necessary, to an integer multiple of sizeof(void *).
        size_t space = 0;
        for (auto t : tinfo) {
            space += 1; // value pointer
            space += t->holder_size_in_ptrs; // holder instance
        }
        size_t flags_at = space;
        space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)

        // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
        // in particular, need to be 0).  Use Python's memory allocation functions: in Python 3.6
        // they default to using pymalloc, which is designed to be efficient for small allocations
        // like the one we're doing here; in earlier versions (and for larger allocations) they are
        // just wrappers around malloc.
#if PY_VERSION_HEX >= 0x03050000
        nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
        if (!nonsimple.values_and_holders) throw std::bad_alloc();
#else
        nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
        if (!nonsimple.values_and_holders) throw std::bad_alloc();
        std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
#endif
        nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
    }
    owned = true;
}

PYBIND11_NOINLINE inline void instance::deallocate_layout() {
    if (!simple_layout)
        PyMem_Free(nonsimple.values_and_holders);
}

PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
    handle type = detail::get_type_handle(tp, false);
    if (!type)
        return false;
    return isinstance(obj, type);
}

PYBIND11_NOINLINE inline std::string error_string() {
    if (!PyErr_Occurred()) {
        PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
        return "Unknown internal error occurred";
    }

    error_scope scope; // Preserve error state

    std::string errorString;
    if (scope.type) {
        errorString += handle(scope.type).attr("__name__").cast<std::string>();
        errorString += ": ";
    }
    if (scope.value)
        errorString += (std::string) str(scope.value);

    PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);

#if PY_MAJOR_VERSION >= 3
    if (scope.trace != nullptr)
        PyException_SetTraceback(scope.value, scope.trace);
#endif

#if !defined(PYPY_VERSION)
    if (scope.trace) {
        PyTracebackObject *trace = (PyTracebackObject *) scope.trace;

        /* Get the deepest trace possible */
        while (trace->tb_next)
            trace = trace->tb_next;

        PyFrameObject *frame = trace->tb_frame;
        errorString += "\n\nAt:\n";
        while (frame) {
            int lineno = PyFrame_GetLineNumber(frame);
            errorString +=
                "  " + handle(frame->f_code->co_filename).cast<std::string>() +
                "(" + std::to_string(lineno) + "): " +
                handle(frame->f_code->co_name).cast<std::string>() + "\n";
            frame = frame->f_back;
        }
    }
#endif

    return errorString;
}

PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
    auto &instances = get_internals().registered_instances;
    auto range = instances.equal_range(ptr);
    for (auto it = range.first; it != range.second; ++it) {
        for (auto vh : values_and_holders(it->second)) {
            if (vh.type == type)
                return handle((PyObject *) it->second);
        }
    }
    return handle();
}

inline PyThreadState *get_thread_state_unchecked() {
#if defined(PYPY_VERSION)
    return PyThreadState_GET();
#elif PY_VERSION_HEX < 0x03000000
    return _PyThreadState_Current;
#elif PY_VERSION_HEX < 0x03050000
    return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
#elif PY_VERSION_HEX < 0x03050200
    return (PyThreadState*) _PyThreadState_Current.value;
#else
    return _PyThreadState_UncheckedGet();
#endif
}

// Forward declarations
inline void keep_alive_impl(handle nurse, handle patient);
inline PyObject *make_new_instance(PyTypeObject *type);

class type_caster_generic {
public:
    PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
        : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }

    type_caster_generic(const type_info *typeinfo)
        : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }

    bool load(handle src, bool convert) {
        return load_impl<type_caster_generic>(src, convert);
    }

    PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
                                         const detail::type_info *tinfo,
                                         void *(*copy_constructor)(const void *),
                                         void *(*move_constructor)(const void *),
                                         const void *existing_holder = nullptr) {
        if (!tinfo) // no type info: error will be set already
            return handle();

        void *src = const_cast<void *>(_src);
        if (src == nullptr)
            return none().release();

        auto it_instances = get_internals().registered_instances.equal_range(src);
        for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
            for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
                if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
                    return handle((PyObject *) it_i->second).inc_ref();
            }
        }

        auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
        auto wrapper = reinterpret_cast<instance *>(inst.ptr());
        wrapper->owned = false;
        void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();

        switch (policy) {
            case return_value_policy::automatic:
            case return_value_policy::take_ownership:
                valueptr = src;
                wrapper->owned = true;
                break;

            case return_value_policy::automatic_reference:
            case return_value_policy::reference:
                valueptr = src;
                wrapper->owned = false;
                break;

            case return_value_policy::copy:
                if (copy_constructor)
                    valueptr = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = copy, but the "
                                     "object is non-copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::move:
                if (move_constructor)
                    valueptr = move_constructor(src);
                else if (copy_constructor)
                    valueptr = copy_constructor(src);
                else
                    throw cast_error("return_value_policy = move, but the "
                                     "object is neither movable nor copyable!");
                wrapper->owned = true;
                break;

            case return_value_policy::reference_internal:
                valueptr = src;
                wrapper->owned = false;
                keep_alive_impl(inst, parent);
                break;

            default:
                throw cast_error("unhandled return_value_policy: should not happen!");
        }

        tinfo->init_instance(wrapper, existing_holder);

        return inst.release();
    }

    // Base methods for generic caster; there are overridden in copyable_holder_caster
    void load_value(value_and_holder &&v_h) {
        auto *&vptr = v_h.value_ptr();
        // Lazy allocation for unallocated values:
        if (vptr == nullptr) {
            auto *type = v_h.type ? v_h.type : typeinfo;
            vptr = type->operator_new(type->type_size);
        }
        value = vptr;
    }
    bool try_implicit_casts(handle src, bool convert) {
        for (auto &cast : typeinfo->implicit_casts) {
            type_caster_generic sub_caster(*cast.first);
            if (sub_caster.load(src, convert)) {
                value = cast.second(sub_caster.value);
                return true;
            }
        }
        return false;
    }
    bool try_direct_conversions(handle src) {
        for (auto &converter : *typeinfo->direct_conversions) {
            if (converter(src.ptr(), value))
                return true;
        }
        return false;
    }
    void check_holder_compat() {}

    PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
        auto caster = type_caster_generic(ti);
        if (caster.load(src, false))
            return caster.value;
        return nullptr;
    }

    /// Try to load with foreign typeinfo, if available. Used when there is no
    /// native typeinfo, or when the native one wasn't able to produce a value.
    PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
        constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
        const auto pytype = src.get_type();
        if (!hasattr(pytype, local_key))
            return false;

        type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
        // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
        if (foreign_typeinfo->module_local_load == &local_load
            || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
            return false;

        if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
            value = result;
            return true;
        }
        return false;
    }

    // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
    // bits of code between here and copyable_holder_caster where the two classes need different
    // logic (without having to resort to virtual inheritance).
    template <typename ThisT>
    PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
        if (!src) return false;
        if (!typeinfo) return try_load_foreign_module_local(src);
        if (src.is_none()) {
            // Defer accepting None to other overloads (if we aren't in convert mode):
            if (!convert) return false;
            value = nullptr;
            return true;
        }

        auto &this_ = static_cast<ThisT &>(*this);
        this_.check_holder_compat();

        PyTypeObject *srctype = Py_TYPE(src.ptr());

        // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
        // the instance's value pointer to the target type:
        if (srctype == typeinfo->type) {
            this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
            return true;
        }
        // Case 2: We have a derived class
        else if (PyType_IsSubtype(srctype, typeinfo->type)) {
            auto &bases = all_type_info(srctype);
            bool no_cpp_mi = typeinfo->simple_type;

            // Case 2a: the python type is a Python-inherited derived class that inherits from just
            // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
            // the right type and we can use reinterpret_cast.
            // (This is essentially the same as case 2b, but because not using multiple inheritance
            // is extremely common, we handle it specially to avoid the loop iterator and type
            // pointer lookup overhead)
            if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
                this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
                return true;
            }
            // Case 2b: the python type inherits from multiple C++ bases.  Check the bases to see if
            // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
            // can safely reinterpret_cast to the relevant pointer.
            else if (bases.size() > 1) {
                for (auto base : bases) {
                    if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
                        this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
                        return true;
                    }
                }
            }

            // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
            // in the registered bases, above, so try implicit casting (needed for proper C++ casting
            // when MI is involved).
            if (this_.try_implicit_casts(src, convert))
                return true;
        }

        // Perform an implicit conversion
        if (convert) {
            for (auto &converter : typeinfo->implicit_conversions) {
                auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
                if (load_impl<ThisT>(temp, false)) {
                    loader_life_support::add_patient(temp);
                    return true;
                }
            }
            if (this_.try_direct_conversions(src))
                return true;
        }

        // Failed to match local typeinfo. Try again with global.
        if (typeinfo->module_local) {
            if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
                typeinfo = gtype;
                return load(src, false);
            }
        }

        // Global typeinfo has precedence over foreign module_local
        return try_load_foreign_module_local(src);
    }


    // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
    // isn't needed or can't be used.  If the type is unknown, sets the error and returns a pair
    // with .second = nullptr.  (p.first = nullptr is not an error: it becomes None).
    PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
            const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
        if (auto *tpi = get_type_info(cast_type))
            return {src, const_cast<const type_info *>(tpi)};

        // Not found, set error:
        std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
        detail::clean_type_id(tname);
        std::string msg = "Unregistered type : " + tname;
        PyErr_SetString(PyExc_TypeError, msg.c_str());
        return {nullptr, nullptr};
    }

    const type_info *typeinfo = nullptr;
    const std::type_info *cpptype = nullptr;
    void *value = nullptr;
};

/**
 * Determine suitable casting operator for pointer-or-lvalue-casting type casters.  The type caster
 * needs to provide `operator T*()` and `operator T&()` operators.
 *
 * If the type supports moving the value away via an `operator T&&() &&` method, it should use
 * `movable_cast_op_type` instead.
 */
template <typename T>
using cast_op_type =
    conditional_t<std::is_pointer<remove_reference_t<T>>::value,
        typename std::add_pointer<intrinsic_t<T>>::type,
        typename std::add_lvalue_reference<intrinsic_t<T>>::type>;

/**
 * Determine suitable casting operator for a type caster with a movable value.  Such a type caster
 * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`.  The latter will be
 * called in appropriate contexts where the value can be moved rather than copied.
 *
 * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
 */
template <typename T>
using movable_cast_op_type =
    conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
        typename std::add_pointer<intrinsic_t<T>>::type,
    conditional_t<std::is_rvalue_reference<T>::value,
        typename std::add_rvalue_reference<intrinsic_t<T>>::type,
        typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;

// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};

// Specialization for types that appear to be copy constructible but also look like stl containers
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
// so, copy constructability depends on whether the value_type is copy constructible.
template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
        std::is_copy_constructible<Container>,
        std::is_same<typename Container::value_type &, typename Container::reference>
    >::value>> : is_copy_constructible<typename Container::value_type> {};

#if !defined(PYBIND11_CPP17)
// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
// two types aren't themselves copy constructible).
template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
    : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
#endif

/// Generic type caster for objects stored on the heap
template <typename type> class type_caster_base : public type_caster_generic {
    using itype = intrinsic_t<type>;
public:
    static PYBIND11_DESCR name() { return type_descr(_<type>()); }

    type_caster_base() : type_caster_base(typeid(type)) { }
    explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }

    static handle cast(const itype &src, return_value_policy policy, handle parent) {
        if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
            policy = return_value_policy::copy;
        return cast(&src, policy, parent);
    }

    static handle cast(itype &&src, return_value_policy, handle parent) {
        return cast(&src, return_value_policy::move, parent);
    }

    // Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a
    // polymorphic type.  If the instance isn't derived, returns the non-RTTI base version.
    template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0>
    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
        const void *vsrc = src;
        auto &cast_type = typeid(itype);
        const std::type_info *instance_type = nullptr;
        if (vsrc) {
            instance_type = &typeid(*src);
            if (!same_type(cast_type, *instance_type)) {
                // This is a base pointer to a derived type; if it is a pybind11-registered type, we
                // can get the correct derived pointer (which may be != base pointer) by a
                // dynamic_cast to most derived type:
                if (auto *tpi = get_type_info(*instance_type))
                    return {dynamic_cast<const void *>(src), const_cast<const type_info *>(tpi)};
            }
        }
        // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
        // don't do a cast
        return type_caster_generic::src_and_type(vsrc, cast_type, instance_type);
    }

    // Non-polymorphic type, so no dynamic casting; just call the generic version directly
    template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0>
    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
        return type_caster_generic::src_and_type(src, typeid(itype));
    }

    static handle cast(const itype *src, return_value_policy policy, handle parent) {
        auto st = src_and_type(src);
        return type_caster_generic::cast(
            st.first, policy, parent, st.second,
            make_copy_constructor(src), make_move_constructor(src));
    }

    static handle cast_holder(const itype *src, const void *holder) {
        auto st = src_and_type(src);
        return type_caster_generic::cast(
            st.first, return_value_policy::take_ownership, {}, st.second,
            nullptr, nullptr, holder);
    }

    template <typename T> using cast_op_type = cast_op_type<T>;

    operator itype*() { return (type *) value; }
    operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }

protected:
    using Constructor = void *(*)(const void *);

    /* Only enabled when the types are {copy,move}-constructible *and* when the type
       does not have a private operator new implementation. */
    template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
    static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
        return [](const void *arg) -> void * {
            return new T(*reinterpret_cast<const T *>(arg));
        };
    }

    template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
    static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
        return [](const void *arg) -> void * {
            return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
        };
    }

    static Constructor make_copy_constructor(...) { return nullptr; }
    static Constructor make_move_constructor(...) { return nullptr; }
};

template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;

// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
    return caster.operator typename make_caster<T>::template cast_op_type<T>();
}
template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
    return std::move(caster).operator
        typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
}

template <typename type> class type_caster<std::reference_wrapper<type>> {
private:
    using caster_t = make_caster<type>;
    caster_t subcaster;
    using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
    static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
            "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
public:
    bool load(handle src, bool convert) { return subcaster.load(src, convert); }
    static PYBIND11_DESCR name() { return caster_t::name(); }
    static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
        // It is definitely wrong to take ownership of this pointer, so mask that rvp
        if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
            policy = return_value_policy::automatic_reference;
        return caster_t::cast(&src.get(), policy, parent);
    }
    template <typename T> using cast_op_type = std::reference_wrapper<type>;
    operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
};

#define PYBIND11_TYPE_CASTER(type, py_name) \
    protected: \
        type value; \
    public: \
        static PYBIND11_DESCR name() { return type_descr(py_name); } \
        template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
        static handle cast(T_ *src, return_value_policy policy, handle parent) { \
            if (!src) return none().release(); \
            if (policy == return_value_policy::take_ownership) { \
                auto h = cast(std::move(*src), policy, parent); delete src; return h; \
            } else { \
                return cast(*src, policy, parent); \
            } \
        } \
        operator type*() { return &value; } \
        operator type&() { return value; } \
        operator type&&() && { return std::move(value); } \
        template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>


template <typename CharT> using is_std_char_type = any_of<
    std::is_same<CharT, char>, /* std::string */
    std::is_same<CharT, char16_t>, /* std::u16string */
    std::is_same<CharT, char32_t>, /* std::u32string */
    std::is_same<CharT, wchar_t> /* std::wstring */
>;

template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
    using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
    using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
    using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
public:

    bool load(handle src, bool convert) {
        py_type py_value;

        if (!src)
            return false;

        if (std::is_floating_point<T>::value) {
            if (convert || PyFloat_Check(src.ptr()))
                py_value = (py_type) PyFloat_AsDouble(src.ptr());
            else
                return false;
        } else if (PyFloat_Check(src.ptr())) {
            return false;
        } else if (std::is_unsigned<py_type>::value) {
            py_value = as_unsigned<py_type>(src.ptr());
        } else { // signed integer:
            py_value = sizeof(T) <= sizeof(long)
                ? (py_type) PyLong_AsLong(src.ptr())
                : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
        }

        bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
        if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
                       (py_value < (py_type) std::numeric_limits<T>::min() ||
                        py_value > (py_type) std::numeric_limits<T>::max()))) {
            bool type_error = py_err && PyErr_ExceptionMatches(
#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
                PyExc_SystemError
#else
                PyExc_TypeError
#endif
            );
            PyErr_Clear();
            if (type_error && convert && PyNumber_Check(src.ptr())) {
                auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
                                                     ? PyNumber_Float(src.ptr())
                                                     : PyNumber_Long(src.ptr()));
                PyErr_Clear();
                return load(tmp, false);
            }
            return false;
        }

        value = (T) py_value;
        return true;
    }

    static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
        if (std::is_floating_point<T>::value) {
            return PyFloat_FromDouble((double) src);
        } else if (sizeof(T) <= sizeof(long)) {
            if (std::is_signed<T>::value)
                return PyLong_FromLong((long) src);
            else
                return PyLong_FromUnsignedLong((unsigned long) src);
        } else {
            if (std::is_signed<T>::value)
                return PyLong_FromLongLong((long long) src);
            else
                return PyLong_FromUnsignedLongLong((unsigned long long) src);
        }
    }

    PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
};

template<typename T> struct void_caster {
public:
    bool load(handle src, bool) {
        if (src && src.is_none())
            return true;
        return false;
    }
    static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
        return none().inc_ref();
    }
    PYBIND11_TYPE_CASTER(T, _("None"));
};

template <> class type_caster<void_type> : public void_caster<void_type> {};

template <> class type_caster<void> : public type_caster<void_type> {
public:
    using type_caster<void_type>::cast;

    bool load(handle h, bool) {
        if (!h) {
            return false;
        } else if (h.is_none()) {
            value = nullptr;
            return true;
        }

        /* Check if this is a capsule */
        if (isinstance<capsule>(h)) {
            value = reinterpret_borrow<capsule>(h);
            return true;
        }

        /* Check if this is a C++ type */
        auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
        if (bases.size() == 1) { // Only allowing loading from a single-value type
            value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
            return true;
        }

        /* Fail */
        return false;
    }

    static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
        if (ptr)
            return capsule(ptr).release();
        else
            return none().inc_ref();
    }

    template <typename T> using cast_op_type = void*&;
    operator void *&() { return value; }
    static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
private:
    void *value = nullptr;
};

template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };

template <> class type_caster<bool> {
public:
    bool load(handle src, bool convert) {
        if (!src) return false;
        else if (src.ptr() == Py_True) { value = true; return true; }
        else if (src.ptr() == Py_False) { value = false; return true; }
        else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
            // (allow non-implicit conversion for numpy booleans)

            Py_ssize_t res = -1;
            if (src.is_none()) {
                res = 0;  // None is implicitly converted to False
            }
            #if defined(PYPY_VERSION)
            // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
            else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
                res = PyObject_IsTrue(src.ptr());
            }
            #else
            // Alternate approach for CPython: this does the same as the above, but optimized
            // using the CPython API so as to avoid an unneeded attribute lookup.
            else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
                if (PYBIND11_NB_BOOL(tp_as_number)) {
                    res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
                }
            }
            #endif
            if (res == 0 || res == 1) {
                value = (bool) res;
                return true;
            }
        }
        return false;
    }
    static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
        return handle(src ? Py_True : Py_False).inc_ref();
    }
    PYBIND11_TYPE_CASTER(bool, _("bool"));
};

// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename StringType, bool IsView = false> struct string_caster {
    using CharT = typename StringType::value_type;

    // Simplify life by being able to assume standard char sizes (the standard only guarantees
    // minimums, but Python requires exact sizes)
    static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
    static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
    static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
    // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
    static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
            "Unsupported wchar_t size != 2/4");
    static constexpr size_t UTF_N = 8 * sizeof(CharT);

    bool load(handle src, bool) {
#if PY_MAJOR_VERSION < 3
        object temp;
#endif
        handle load_src = src;
        if (!src) {
            return false;
        } else if (!PyUnicode_Check(load_src.ptr())) {
#if PY_MAJOR_VERSION >= 3
            return load_bytes(load_src);
#else
            if (sizeof(CharT) == 1) {
                return load_bytes(load_src);
            }

            // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
            if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
                return false;

            temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
            if (!temp) { PyErr_Clear(); return false; }
            load_src = temp;
#endif
        }

        object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
            load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
        if (!utfNbytes) { PyErr_Clear(); return false; }

        const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
        size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
        if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
        value = StringType(buffer, length);

        // If we're loading a string_view we need to keep the encoded Python object alive:
        if (IsView)
            loader_life_support::add_patient(utfNbytes);

        return true;
    }

    static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
        const char *buffer = reinterpret_cast<const char *>(src.data());
        ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
        handle s = decode_utfN(buffer, nbytes);
        if (!s) throw error_already_set();
        return s;
    }

    PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));

private:
    static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
        return
            UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
            UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
                          PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
        // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
        // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
        // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
        // passing the encoding as a string value, which works properly:
        return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
#endif
    }

    // When loading into a std::string or char*, accept a bytes object as-is (i.e.
    // without any encoding/decoding attempt).  For other C++ char sizes this is a no-op.
    // which supports loading a unicode from a str, doesn't take this path.
    template <typename C = CharT>
    bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
        if (PYBIND11_BYTES_CHECK(src.ptr())) {
            // We were passed a Python 3 raw bytes; accept it into a std::string or char*
            // without any encoding attempt.
            const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
            if (bytes) {
                value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
                return true;
            }
        }

        return false;
    }

    template <typename C = CharT>
    bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
};

template <typename CharT, class Traits, class Allocator>
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
    : string_caster<std::basic_string<CharT, Traits, Allocator>> {};

#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
    : string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif

// Type caster for C-style strings.  We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
    using StringType = std::basic_string<CharT>;
    using StringCaster = type_caster<StringType>;
    StringCaster str_caster;
    bool none = false;
public:
    bool load(handle src, bool convert) {
        if (!src) return false;
        if (src.is_none()) {
            // Defer accepting None to other overloads (if we aren't in convert mode):
            if (!convert) return false;
            none = true;
            return true;
        }
        return str_caster.load(src, convert);
    }

    static handle cast(const CharT *src, return_value_policy policy, handle parent) {
        if (src == nullptr) return pybind11::none().inc_ref();
        return StringCaster::cast(StringType(src), policy, parent);
    }

    static handle cast(CharT src, return_value_policy policy, handle parent) {
        if (std::is_same<char, CharT>::value) {
            handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
            if (!s) throw error_already_set();
            return s;
        }
        return StringCaster::cast(StringType(1, src), policy, parent);
    }

    operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
    operator CharT() {
        if (none)
            throw value_error("Cannot convert None to a character");

        auto &value = static_cast<StringType &>(str_caster);
        size_t str_len = value.size();
        if (str_len == 0)
            throw value_error("Cannot convert empty string to a character");

        // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
        // is too high, and one for multiple unicode characters (caught later), so we need to figure
        // out how long the first encoded character is in bytes to distinguish between these two
        // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those
        // can fit into a single char value.
        if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
            unsigned char v0 = static_cast<unsigned char>(value[0]);
            size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
                (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
                (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
                4; // 0b11110xxx - start of 4-byte sequence

            if (char0_bytes == str_len) {
                // If we have a 128-255 value, we can decode it into a single char:
                if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
                    return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
                }
                // Otherwise we have a single character, but it's > U+00FF
                throw value_error("Character code point not in range(0x100)");
            }
        }

        // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
        // surrogate pair with total length 2 instantly indicates a range error (but not a "your
        // string was too long" error).
        else if (StringCaster::UTF_N == 16 && str_len == 2) {
            char16_t v0 = static_cast<char16_t>(value[0]);
            if (v0 >= 0xD800 && v0 < 0xE000)
                throw value_error("Character code point not in range(0x10000)");
        }

        if (str_len != 1)
            throw value_error("Expected a character, but multi-character string found");

        return value[0];
    }

    static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
    template <typename _T> using cast_op_type = remove_reference_t<pybind11::detail::cast_op_type<_T>>;
};

// Base implementation for std::tuple and std::pair
template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
    using type = Tuple<Ts...>;
    static constexpr auto size = sizeof...(Ts);
    using indices = make_index_sequence<size>;
public:

    bool load(handle src, bool convert) {
        if (!isinstance<sequence>(src))
            return false;
        const auto seq = reinterpret_borrow<sequence>(src);
        if (seq.size() != size)
            return false;
        return load_impl(seq, convert, indices{});
    }

    template <typename T>
    static handle cast(T &&src, return_value_policy policy, handle parent) {
        return cast_impl(std::forward<T>(src), policy, parent, indices{});
    }

    static PYBIND11_DESCR name() {
        return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
    }

    template <typename T> using cast_op_type = type;

    operator type() & { return implicit_cast(indices{}); }
    operator type() && { return std::move(*this).implicit_cast(indices{}); }

protected:
    template <size_t... Is>
    type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
    template <size_t... Is>
    type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }

    static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
            if (!r)
                return false;
        return true;
    }

    /* Implementation: Convert a C++ tuple into a Python tuple */
    template <typename T, size_t... Is>
    static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
        std::array<object, size> entries{{
            reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
        }};
        for (const auto &entry: entries)
            if (!entry)
                return handle();
        tuple result(size);
        int counter = 0;
        for (auto & entry: entries)
            PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
        return result.release();
    }

    Tuple<make_caster<Ts>...> subcasters;
};

template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
    : public tuple_caster<std::pair, T1, T2> {};

template <typename... Ts> class type_caster<std::tuple<Ts...>>
    : public tuple_caster<std::tuple, Ts...> {};

/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T>
struct holder_helper {
    static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
};

/// Type caster for holder types like std::shared_ptr, etc.
template <typename type, typename holder_type>
struct copyable_holder_caster : public type_caster_base<type> {
public:
    using base = type_caster_base<type>;
    static_assert(std::is_base_of<base, type_caster<type>>::value,
            "Holder classes are only supported for custom types");
    using base::base;
    using base::cast;
    using base::typeinfo;
    using base::value;

    bool load(handle src, bool convert) {
        return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
    }

    explicit operator type*() { return this->value; }
    explicit operator type&() { return *(this->value); }
    explicit operator holder_type*() { return &holder; }

    // Workaround for Intel compiler bug
    // see pybind11 issue 94
    #if defined(__ICC) || defined(__INTEL_COMPILER)
    operator holder_type&() { return holder; }
    #else
    explicit operator holder_type&() { return holder; }
    #endif

    static handle cast(const holder_type &src, return_value_policy, handle) {
        const auto *ptr = holder_helper<holder_type>::get(src);
        return type_caster_base<type>::cast_holder(ptr, &src);
    }

protected:
    friend class type_caster_generic;
    void check_holder_compat() {
        if (typeinfo->default_holder)
            throw cast_error("Unable to load a custom holder type from a default-holder instance");
    }

    bool load_value(value_and_holder &&v_h) {
        if (v_h.holder_constructed()) {
            value = v_h.value_ptr();
            holder = v_h.holder<holder_type>();
            return true;
        } else {
            throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if defined(NDEBUG)
                             "(compile in debug mode for type information)");
#else
                             "of type '" + type_id<holder_type>() + "''");
#endif
        }
    }

    template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle, bool) { return false; }

    template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
    bool try_implicit_casts(handle src, bool convert) {
        for (auto &cast : typeinfo->implicit_casts) {
            copyable_holder_caster sub_caster(*cast.first);
            if (sub_caster.load(src, convert)) {
                value = cast.second(sub_caster.value);
                holder = holder_type(sub_caster.holder, (type *) value);
                return true;
            }
        }
        return false;
    }

    static bool try_direct_conversions(handle) { return false; }


    holder_type holder;
};

/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };

template <typename type, typename holder_type>
struct move_only_holder_caster {
    static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
            "Holder classes are only supported for custom types");

    static handle cast(holder_type &&src, return_value_policy, handle) {
        auto *ptr = holder_helper<holder_type>::get(src);
        return type_caster_base<type>::cast_holder(ptr, &src);
    }
    static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
};

template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
    : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };

template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
                                         copyable_holder_caster<type, holder_type>,
                                         move_only_holder_caster<type, holder_type>>;

template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };

/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
    namespace pybind11 { namespace detail { \
    template <typename type> \
    struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
    template <typename type> \
    class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
        : public type_caster_holder<type, holder_type> { }; \
    }}

// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder> struct is_holder_type :
    std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
    std::true_type {};

template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };

template <typename type>
struct pyobject_caster {
    template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
    bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }

    template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
    bool load(handle src, bool /* convert */) {
        if (!isinstance<type>(src))
            return false;
        value = reinterpret_borrow<type>(src);
        return true;
    }

    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
        return src.inc_ref();
    }
    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
};

template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };

// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
//   must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T> using move_is_plain_type = satisfies_none_of<T,
    std::is_void, std::is_pointer, std::is_reference, std::is_const
>;
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
template <typename T> struct move_always<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<is_copy_constructible<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
    move_is_plain_type<T>,
    negation<move_always<T>>,
    std::is_move_constructible<T>,
    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;

// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster.  Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type> using cast_is_temporary_value_reference = bool_constant<
    (std::is_reference<type>::value || std::is_pointer<type>::value) &&
    !std::is_base_of<type_caster_generic, make_caster<type>>::value
>;

// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.  Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
// specializing this struct.
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
    static return_value_policy policy(return_value_policy p) {
        return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
            ? return_value_policy::move : p;
    }
};

// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
    if (!conv.load(handle, true)) {
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
        throw cast_error("Unable to cast Python instance of type " +
            (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
#endif
    }
    return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T> make_caster<T> load_type(const handle &handle) {
    make_caster<T> conv;
    load_type(conv, handle);
    return conv;
}

NAMESPACE_END(detail)

// pytype -> C++ type
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
    using namespace detail;
    static_assert(!cast_is_temporary_value_reference<T>::value,
            "Unable to cast type to reference: value is local to type caster");
    return cast_op<T>(load_type<T>(handle));
}

// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }

// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
            handle parent = handle()) {
    if (policy == return_value_policy::automatic)
        policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
    else if (policy == return_value_policy::automatic_reference)
        policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
    return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
}

template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
template <> inline void handle::cast() const { return; }

template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
    if (obj.ref_count() > 1)
#if defined(NDEBUG)
        throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
            " (compile in debug mode for details)");
#else
        throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
                " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
#endif

    // Move into a temporary and return that, because the reference may be a local value of `conv`
    T ret = std::move(detail::load_type<T>(obj).operator T&());
    return ret;
}

// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
//   object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
    return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
    if (object.ref_count() > 1)
        return cast<T>(object);
    else
        return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
    return cast<T>(object);
}

template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
template <> inline void object::cast() const & { return; }
template <> inline void object::cast() && { return; }

NAMESPACE_BEGIN(detail)

// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }

struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
template <typename ret_type> using overload_caster_t = conditional_t<
    cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;

// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable.  For other types, this is a no-op.
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
    return cast_op<T>(load_type(caster, o));
}
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
    pybind11_fail("Internal error: cast_ref fallback invoked"); }

// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
// cases where pybind11::cast is valid.
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
    return pybind11::cast<T>(std::move(o)); }
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
    pybind11_fail("Internal error: cast_safe fallback invoked"); }
template <> inline void cast_safe<void>(object &&) {}

NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference,
          typename... Args> tuple make_tuple(Args&&... args_) {
    constexpr size_t size = sizeof...(Args);
    std::array<object, size> args {
        { reinterpret_steal<object>(detail::make_caster<Args>::cast(
            std::forward<Args>(args_), policy, nullptr))... }
    };
    for (size_t i = 0; i < args.size(); i++) {
        if (!args[i]) {
#if defined(NDEBUG)
            throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
#else
            std::array<std::string, size> argtypes { {type_id<Args>()...} };
            throw cast_error("make_tuple(): unable to convert argument of type '" +
                argtypes[i] + "' to Python object");
#endif
        }
    }
    tuple result(size);
    int counter = 0;
    for (auto &arg_value : args)
        PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
    return result;
}

/// \ingroup annotations
/// Annotation for arguments
struct arg {
    /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
    constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
    /// Assign a value to this argument
    template <typename T> arg_v operator=(T &&value) const;
    /// Indicate that the type should not be converted in the type caster
    arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
    /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
    arg &none(bool flag = true) { flag_none = flag; return *this; }

    const char *name; ///< If non-null, this is a named kwargs argument
    bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
    bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};

/// \ingroup annotations
/// Annotation for arguments with values
struct arg_v : arg {
private:
    template <typename T>
    arg_v(arg &&base, T &&x, const char *descr = nullptr)
        : arg(base),
          value(reinterpret_steal<object>(
              detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
          )),
          descr(descr)
#if !defined(NDEBUG)
        , type(type_id<T>())
#endif
    { }

public:
    /// Direct construction with name, default, and description
    template <typename T>
    arg_v(const char *name, T &&x, const char *descr = nullptr)
        : arg_v(arg(name), std::forward<T>(x), descr) { }

    /// Called internally when invoking `py::arg("a") = value`
    template <typename T>
    arg_v(const arg &base, T &&x, const char *descr = nullptr)
        : arg_v(arg(base), std::forward<T>(x), descr) { }

    /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
    arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }

    /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
    arg_v &none(bool flag = true) { arg::none(flag); return *this; }

    /// The default value
    object value;
    /// The (optional) description of the default value
    const char *descr;
#if !defined(NDEBUG)
    /// The C++ type name of the default value (only available when compiled in debug mode)
    std::string type;
#endif
};

template <typename T>
arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }

/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/> using arg_t = arg_v;

inline namespace literals {
/** \rst
    String literal version of `arg`
 \endrst */
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
}

NAMESPACE_BEGIN(detail)

// forward declaration (definition in attr.h)
struct function_record;

/// Internal data associated with a single function call
struct function_call {
    function_call(function_record &f, handle p); // Implementation in attr.h

    /// The function data:
    const function_record &func;

    /// Arguments passed to the function:
    std::vector<handle> args;

    /// The `convert` value the arguments should be loaded with
    std::vector<bool> args_convert;

    /// The parent, if any
    handle parent;

    /// If this is a call to an initializer, this argument contains `self`
    handle init_self;
};


/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
    using indices = make_index_sequence<sizeof...(Args)>;

    template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>;
    template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
    // Get args/kwargs argument positions relative to the end of the argument list:
    static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
                        kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);

    static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;

    static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");

public:
    static constexpr bool has_kwargs = kwargs_pos < 0;
    static constexpr bool has_args = args_pos < 0;

    static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }

    bool load_args(function_call &call) {
        return load_impl_sequence(call, indices{});
    }

    template <typename Return, typename Guard, typename Func>
    enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
        return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
    }

    template <typename Return, typename Guard, typename Func>
    enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
        std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
        return void_type();
    }

private:

    static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }

    template <size_t... Is>
    bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
        for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
            if (!r)
                return false;
        return true;
    }

    template <typename Return, typename Func, size_t... Is, typename Guard>
    Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
        return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
    }

    std::tuple<make_caster<Args>...> argcasters;
};

/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy>
class simple_collector {
public:
    template <typename... Ts>
    explicit simple_collector(Ts &&...values)
        : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }

    const tuple &args() const & { return m_args; }
    dict kwargs() const { return {}; }

    tuple args() && { return std::move(m_args); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    tuple m_args;
};

/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
    template <typename... Ts>
    explicit unpacking_collector(Ts &&...values) {
        // Tuples aren't (easily) resizable so a list is needed for collection,
        // but the actual function call strictly requires a tuple.
        auto args_list = list();
        int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
        ignore_unused(_);

        m_args = std::move(args_list);
    }

    const tuple &args() const & { return m_args; }
    const dict &kwargs() const & { return m_kwargs; }

    tuple args() && { return std::move(m_args); }
    dict kwargs() && { return std::move(m_kwargs); }

    /// Call a Python function and pass the collected arguments
    object call(PyObject *ptr) const {
        PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
        if (!result)
            throw error_already_set();
        return reinterpret_steal<object>(result);
    }

private:
    template <typename T>
    void process(list &args_list, T &&x) {
        auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
        if (!o) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(std::to_string(args_list.size()), type_id<T>());
#endif
        }
        args_list.append(o);
    }

    void process(list &args_list, detail::args_proxy ap) {
        for (const auto &a : ap)
            args_list.append(a);
    }

    void process(list &/*args_list*/, arg_v a) {
        if (!a.name)
#if defined(NDEBUG)
            nameless_argument_error();
#else
            nameless_argument_error(a.type);
#endif

        if (m_kwargs.contains(a.name)) {
#if defined(NDEBUG)
            multiple_values_error();
#else
            multiple_values_error(a.name);
#endif
        }
        if (!a.value) {
#if defined(NDEBUG)
            argument_cast_error();
#else
            argument_cast_error(a.name, a.type);
#endif
        }
        m_kwargs[a.name] = a.value;
    }

    void process(list &/*args_list*/, detail::kwargs_proxy kp) {
        if (!kp)
            return;
        for (const auto &k : reinterpret_borrow<dict>(kp)) {
            if (m_kwargs.contains(k.first)) {
#if defined(NDEBUG)
                multiple_values_error();
#else
                multiple_values_error(str(k.first));
#endif
            }
            m_kwargs[k.first] = k.second;
        }
    }

    [[noreturn]] static void nameless_argument_error() {
        throw type_error("Got kwargs without a name; only named arguments "
                         "may be passed via py::arg() to a python function call. "
                         "(compile in debug mode for details)");
    }
    [[noreturn]] static void nameless_argument_error(std::string type) {
        throw type_error("Got kwargs without a name of type '" + type + "'; only named "
                         "arguments may be passed via py::arg() to a python function call. ");
    }
    [[noreturn]] static void multiple_values_error() {
        throw type_error("Got multiple values for keyword argument "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void multiple_values_error(std::string name) {
        throw type_error("Got multiple values for keyword argument '" + name + "'");
    }

    [[noreturn]] static void argument_cast_error() {
        throw cast_error("Unable to convert call argument to Python object "
                         "(compile in debug mode for details)");
    }

    [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
        throw cast_error("Unable to convert call argument '" + name
                         + "' of type '" + type + "' to Python object");
    }

private:
    tuple m_args;
    dict m_kwargs;
};

/// Collect only positional arguments for a Python function call
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<all_of<is_positional<Args>...>::value>>
simple_collector<policy> collect_arguments(Args &&...args) {
    return simple_collector<policy>(std::forward<Args>(args)...);
}

/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy, typename... Args,
          typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
    // Following argument order rules for generalized unpacking according to PEP 448
    static_assert(
        constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
        && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
        "Invalid function call: positional args must precede keywords and ** unpacking; "
        "* unpacking must precede ** unpacking"
    );
    return unpacking_collector<policy>(std::forward<Args>(args)...);
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
    return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}

template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
    return operator()<policy>(std::forward<Args>(args)...);
}

NAMESPACE_END(detail)

#define PYBIND11_MAKE_OPAQUE(Type) \
    namespace pybind11 { namespace detail { \
        template<> class type_caster<Type> : public type_caster_base<Type> { }; \
    }}

NAMESPACE_END(PYBIND11_NAMESPACE)