summaryrefslogtreecommitdiff
path: root/ext/pybind11/include/pybind11/eigen.h
blob: 0a1208e16d62b461ba29399d395d6f323a8476d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
    pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "numpy.h"

#if defined(__INTEL_COMPILER)
#  pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#elif defined(__GNUG__) || defined(__clang__)
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wconversion"
#  pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif

#include <Eigen/Core>
#include <Eigen/SparseCore>

#if defined(__GNUG__) || defined(__clang__)
#  pragma GCC diagnostic pop
#endif

#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif

NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)

template <typename T> using is_eigen_dense = is_template_base_of<Eigen::DenseBase, T>;
template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
template <typename T> using is_eigen_ref = is_template_base_of<Eigen::RefBase, T>;

// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above.  This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data().  For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
template <typename T> using is_eigen_base = bool_constant<
    is_template_base_of<Eigen::EigenBase, T>::value
    && !is_eigen_dense<T>::value && !is_eigen_sparse<T>::value
>;

template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense<Type>::value && !is_eigen_ref<Type>::value>> {
    typedef typename Type::Scalar Scalar;
    static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit;
    static constexpr bool isVector = Type::IsVectorAtCompileTime;

    bool load(handle src, bool) {
        auto buf = array_t<Scalar>::ensure(src);
        if (!buf)
            return false;

        if (buf.ndim() == 1) {
            typedef Eigen::InnerStride<> Strides;
            if (!isVector &&
                !(Type::RowsAtCompileTime == Eigen::Dynamic &&
                  Type::ColsAtCompileTime == Eigen::Dynamic))
                return false;

            if (Type::SizeAtCompileTime != Eigen::Dynamic &&
                buf.shape(0) != (size_t) Type::SizeAtCompileTime)
                return false;

            Strides::Index n_elts = (Strides::Index) buf.shape(0);
            Strides::Index unity = 1;

            value = Eigen::Map<Type, 0, Strides>(
                buf.mutable_data(),
                rowMajor ? unity : n_elts,
                rowMajor ? n_elts : unity,
                Strides(buf.strides(0) / sizeof(Scalar))
            );
        } else if (buf.ndim() == 2) {
            typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;

            if ((Type::RowsAtCompileTime != Eigen::Dynamic && buf.shape(0) != (size_t) Type::RowsAtCompileTime) ||
                (Type::ColsAtCompileTime != Eigen::Dynamic && buf.shape(1) != (size_t) Type::ColsAtCompileTime))
                return false;

            value = Eigen::Map<Type, 0, Strides>(
                buf.mutable_data(),
                typename Strides::Index(buf.shape(0)),
                typename Strides::Index(buf.shape(1)),
                Strides(buf.strides(rowMajor ? 0 : 1) / sizeof(Scalar),
                        buf.strides(rowMajor ? 1 : 0) / sizeof(Scalar))
            );
        } else {
            return false;
        }
        return true;
    }

    static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
        if (isVector) {
            return array(
                { (size_t) src.size() },                                      // shape
                { sizeof(Scalar) * static_cast<size_t>(src.innerStride()) },  // strides
                src.data()                                                    // data
            ).release();
        } else {
            return array(
                { (size_t) src.rows(),                                        // shape
                  (size_t) src.cols() },
                { sizeof(Scalar) * static_cast<size_t>(src.rowStride()),      // strides
                  sizeof(Scalar) * static_cast<size_t>(src.colStride()) },
                src.data()                                                    // data
            ).release();
        }
    }

    PYBIND11_TYPE_CASTER(Type, _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() +
            _("[") + rows() + _(", ") + cols() + _("]]"));

protected:
    template <typename T = Type, enable_if_t<T::RowsAtCompileTime == Eigen::Dynamic, int> = 0>
    static PYBIND11_DESCR rows() { return _("m"); }
    template <typename T = Type, enable_if_t<T::RowsAtCompileTime != Eigen::Dynamic, int> = 0>
    static PYBIND11_DESCR rows() { return _<T::RowsAtCompileTime>(); }
    template <typename T = Type, enable_if_t<T::ColsAtCompileTime == Eigen::Dynamic, int> = 0>
    static PYBIND11_DESCR cols() { return _("n"); }
    template <typename T = Type, enable_if_t<T::ColsAtCompileTime != Eigen::Dynamic, int> = 0>
    static PYBIND11_DESCR cols() { return _<T::ColsAtCompileTime>(); }
};

// Eigen::Ref<Derived> satisfies is_eigen_dense, but isn't constructable, so it needs a special
// type_caster to handle argument copying/forwarding.
template <typename CVDerived, int Options, typename StrideType>
struct type_caster<Eigen::Ref<CVDerived, Options, StrideType>> {
protected:
    using Type = Eigen::Ref<CVDerived, Options, StrideType>;
    using Derived = typename std::remove_const<CVDerived>::type;
    using DerivedCaster = type_caster<Derived>;
    DerivedCaster derived_caster;
    std::unique_ptr<Type> value;
public:
    bool load(handle src, bool convert) { if (derived_caster.load(src, convert)) { value.reset(new Type(derived_caster.operator Derived&())); return true; } return false; }
    static handle cast(const Type &src, return_value_policy policy, handle parent) { return DerivedCaster::cast(src, policy, parent); }
    static handle cast(const Type *src, return_value_policy policy, handle parent) { return DerivedCaster::cast(*src, policy, parent); }

    static PYBIND11_DESCR name() { return DerivedCaster::name(); }

    operator Type*() { return value.get(); }
    operator Type&() { if (!value) pybind11_fail("Eigen::Ref<...> value not loaded"); return *value; }
    template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
};

// type_caster for special matrix types (e.g. DiagonalMatrix): load() is not supported, but we can
// cast them into the python domain by first copying to a regular Eigen::Matrix, then casting that.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_base<Type>::value && !is_eigen_ref<Type>::value>> {
protected:
    using Matrix = Eigen::Matrix<typename Type::Scalar, Eigen::Dynamic, Eigen::Dynamic>;
    using MatrixCaster = type_caster<Matrix>;
public:
    [[noreturn]] bool load(handle, bool) { pybind11_fail("Unable to load() into specialized EigenBase object"); }
    static handle cast(const Type &src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(src), policy, parent); }
    static handle cast(const Type *src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(*src), policy, parent); }

    static PYBIND11_DESCR name() { return MatrixCaster::name(); }

    [[noreturn]] operator Type*() { pybind11_fail("Loading not supported for specialized EigenBase object"); }
    [[noreturn]] operator Type&() { pybind11_fail("Loading not supported for specialized EigenBase object"); }
    template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
};

template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
    typedef typename Type::Scalar Scalar;
    typedef typename std::remove_reference<decltype(*std::declval<Type>().outerIndexPtr())>::type StorageIndex;
    typedef typename Type::Index Index;
    static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit;

    bool load(handle src, bool) {
        if (!src)
            return false;

        auto obj = reinterpret_borrow<object>(src);
        object sparse_module = module::import("scipy.sparse");
        object matrix_type = sparse_module.attr(
            rowMajor ? "csr_matrix" : "csc_matrix");

        if (obj.get_type() != matrix_type.ptr()) {
            try {
                obj = matrix_type(obj);
            } catch (const error_already_set &) {
                return false;
            }
        }

        auto values = array_t<Scalar>((object) obj.attr("data"));
        auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
        auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
        auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
        auto nnz = obj.attr("nnz").cast<Index>();

        if (!values || !innerIndices || !outerIndices)
            return false;

        value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
            shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
            outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());

        return true;
    }

    static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
        const_cast<Type&>(src).makeCompressed();

        object matrix_type = module::import("scipy.sparse").attr(
            rowMajor ? "csr_matrix" : "csc_matrix");

        array data((size_t) src.nonZeros(), src.valuePtr());
        array outerIndices((size_t) (rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
        array innerIndices((size_t) src.nonZeros(), src.innerIndexPtr());

        return matrix_type(
            std::make_tuple(data, innerIndices, outerIndices),
            std::make_pair(src.rows(), src.cols())
        ).release();
    }

    PYBIND11_TYPE_CASTER(Type, _<(Type::Flags & Eigen::RowMajorBit) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
            + npy_format_descriptor<Scalar>::name() + _("]"));
};

NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

#if defined(_MSC_VER)
#pragma warning(pop)
#endif