summaryrefslogtreecommitdiff
path: root/ext/pybind11/include/pybind11/pybind11.h
blob: db325e0c5354ea056d47912cd9523f58d287a5c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
/*
    pybind11/pybind11.h: Main header file of the C++11 python
    binding generator library

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#if defined(_MSC_VER)
#  pragma warning(push)
#  pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
#  pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#  pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
#  pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
#  pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
#  pragma warning(disable: 4702) // warning C4702: unreachable code
#  pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified
#elif defined(__INTEL_COMPILER)
#  pragma warning(push)
#  pragma warning(disable: 68)    // integer conversion resulted in a change of sign
#  pragma warning(disable: 186)   // pointless comparison of unsigned integer with zero
#  pragma warning(disable: 878)   // incompatible exception specifications
#  pragma warning(disable: 1334)  // the "template" keyword used for syntactic disambiguation may only be used within a template
#  pragma warning(disable: 1682)  // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#  pragma warning(disable: 1875)  // offsetof applied to non-POD (Plain Old Data) types is nonstandard
#  pragma warning(disable: 2196)  // warning #2196: routine is both "inline" and "noinline"
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
#  pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#  pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#  pragma GCC diagnostic ignored "-Wstrict-aliasing"
#  pragma GCC diagnostic ignored "-Wattributes"
#  if __GNUC__ >= 7
#    pragma GCC diagnostic ignored "-Wnoexcept-type"
#  endif
#endif

#include "attr.h"
#include "options.h"
#include "detail/class.h"
#include "detail/init.h"

NAMESPACE_BEGIN(PYBIND11_NAMESPACE)

/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
public:
    cpp_function() { }

    /// Construct a cpp_function from a vanilla function pointer
    template <typename Return, typename... Args, typename... Extra>
    cpp_function(Return (*f)(Args...), const Extra&... extra) {
        initialize(f, f, extra...);
    }

    /// Construct a cpp_function from a lambda function (possibly with internal state)
    template <typename Func, typename... Extra,
              typename = detail::enable_if_t<detail::is_lambda<Func>::value>>
    cpp_function(Func &&f, const Extra&... extra) {
        initialize(std::forward<Func>(f),
                   (detail::function_signature_t<Func> *) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (non-const)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) {
        initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*) (Class *, Arg...)) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (const)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) {
        initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*)(const Class *, Arg ...)) nullptr, extra...);
    }

    /// Return the function name
    object name() const { return attr("__name__"); }

protected:
    /// Space optimization: don't inline this frequently instantiated fragment
    PYBIND11_NOINLINE detail::function_record *make_function_record() {
        return new detail::function_record();
    }

    /// Special internal constructor for functors, lambda functions, etc.
    template <typename Func, typename Return, typename... Args, typename... Extra>
    void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) {

        struct capture { detail::remove_reference_t<Func> f; };

        /* Store the function including any extra state it might have (e.g. a lambda capture object) */
        auto rec = make_function_record();

        /* Store the capture object directly in the function record if there is enough space */
        if (sizeof(capture) <= sizeof(rec->data)) {
            /* Without these pragmas, GCC warns that there might not be
               enough space to use the placement new operator. However, the
               'if' statement above ensures that this is the case. */
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wplacement-new"
#endif
            new ((capture *) &rec->data) capture { std::forward<Func>(f) };
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic pop
#endif
            if (!std::is_trivially_destructible<Func>::value)
                rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); };
        } else {
            rec->data[0] = new capture { std::forward<Func>(f) };
            rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); };
        }

        /* Type casters for the function arguments and return value */
        using cast_in = detail::argument_loader<Args...>;
        using cast_out = detail::make_caster<
            detail::conditional_t<std::is_void<Return>::value, detail::void_type, Return>
        >;

        static_assert(detail::expected_num_args<Extra...>(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs),
                      "The number of argument annotations does not match the number of function arguments");

        /* Dispatch code which converts function arguments and performs the actual function call */
        rec->impl = [](detail::function_call &call) -> handle {
            cast_in args_converter;

            /* Try to cast the function arguments into the C++ domain */
            if (!args_converter.load_args(call))
                return PYBIND11_TRY_NEXT_OVERLOAD;

            /* Invoke call policy pre-call hook */
            detail::process_attributes<Extra...>::precall(call);

            /* Get a pointer to the capture object */
            auto data = (sizeof(capture) <= sizeof(call.func.data)
                         ? &call.func.data : call.func.data[0]);
            capture *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));

            /* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */
            const auto policy = detail::return_value_policy_override<Return>::policy(call.func.policy);

            /* Function scope guard -- defaults to the compile-to-nothing `void_type` */
            using Guard = detail::extract_guard_t<Extra...>;

            /* Perform the function call */
            handle result = cast_out::cast(
                std::move(args_converter).template call<Return, Guard>(cap->f), policy, call.parent);

            /* Invoke call policy post-call hook */
            detail::process_attributes<Extra...>::postcall(call, result);

            return result;
        };

        /* Process any user-provided function attributes */
        detail::process_attributes<Extra...>::init(extra..., rec);

        /* Generate a readable signature describing the function's arguments and return value types */
        using detail::descr; using detail::_;
        PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name();

        /* Register the function with Python from generic (non-templated) code */
        initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args));

        if (cast_in::has_args) rec->has_args = true;
        if (cast_in::has_kwargs) rec->has_kwargs = true;

        /* Stash some additional information used by an important optimization in 'functional.h' */
        using FunctionType = Return (*)(Args...);
        constexpr bool is_function_ptr =
            std::is_convertible<Func, FunctionType>::value &&
            sizeof(capture) == sizeof(void *);
        if (is_function_ptr) {
            rec->is_stateless = true;
            rec->data[1] = const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType)));
        }
    }

    /// Register a function call with Python (generic non-templated code goes here)
    void initialize_generic(detail::function_record *rec, const char *text,
                            const std::type_info *const *types, size_t args) {

        /* Create copies of all referenced C-style strings */
        rec->name = strdup(rec->name ? rec->name : "");
        if (rec->doc) rec->doc = strdup(rec->doc);
        for (auto &a: rec->args) {
            if (a.name)
                a.name = strdup(a.name);
            if (a.descr)
                a.descr = strdup(a.descr);
            else if (a.value)
                a.descr = strdup(a.value.attr("__repr__")().cast<std::string>().c_str());
        }

        rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__");

#if !defined(NDEBUG) && !defined(PYBIND11_DISABLE_NEW_STYLE_INIT_WARNING)
        if (rec->is_constructor && !rec->is_new_style_constructor) {
            const auto class_name = std::string(((PyTypeObject *) rec->scope.ptr())->tp_name);
            const auto func_name = std::string(rec->name);
            PyErr_WarnEx(
                PyExc_FutureWarning,
                ("pybind11-bound class '" + class_name + "' is using an old-style "
                 "placement-new '" + func_name + "' which has been deprecated. See "
                 "the upgrade guide in pybind11's docs. This message is only visible "
                 "when compiled in debug mode.").c_str(), 0
            );
        }
#endif

        /* Generate a proper function signature */
        std::string signature;
        size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0;
        while (true) {
            char c = text[char_index++];
            if (c == '\0')
                break;

            if (c == '{') {
                // Write arg name for everything except *args, **kwargs and return type.
                if (type_depth == 0 && text[char_index] != '*' && arg_index < args) {
                    if (!rec->args.empty() && rec->args[arg_index].name) {
                        signature += rec->args[arg_index].name;
                    } else if (arg_index == 0 && rec->is_method) {
                        signature += "self";
                    } else {
                        signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0));
                    }
                    signature += ": ";
                }
                ++type_depth;
            } else if (c == '}') {
                --type_depth;
                if (type_depth == 0) {
                    if (arg_index < rec->args.size() && rec->args[arg_index].descr) {
                        signature += "=";
                        signature += rec->args[arg_index].descr;
                    }
                    arg_index++;
                }
            } else if (c == '%') {
                const std::type_info *t = types[type_index++];
                if (!t)
                    pybind11_fail("Internal error while parsing type signature (1)");
                if (auto tinfo = detail::get_type_info(*t)) {
#if defined(PYPY_VERSION)
                    signature += handle((PyObject *) tinfo->type)
                                     .attr("__module__")
                                     .cast<std::string>() + ".";
#endif
                    signature += tinfo->type->tp_name;
                } else if (rec->is_new_style_constructor && arg_index == 0) {
                    // A new-style `__init__` takes `self` as `value_and_holder`.
                    // Rewrite it to the proper class type.
#if defined(PYPY_VERSION)
                    signature += rec->scope.attr("__module__").cast<std::string>() + ".";
#endif
                    signature += ((PyTypeObject *) rec->scope.ptr())->tp_name;
                } else {
                    std::string tname(t->name());
                    detail::clean_type_id(tname);
                    signature += tname;
                }
            } else {
                signature += c;
            }
        }
        if (type_depth != 0 || types[type_index] != nullptr)
            pybind11_fail("Internal error while parsing type signature (2)");

        #if !defined(PYBIND11_CONSTEXPR_DESCR)
            delete[] types;
            delete[] text;
        #endif

#if PY_MAJOR_VERSION < 3
        if (strcmp(rec->name, "__next__") == 0) {
            std::free(rec->name);
            rec->name = strdup("next");
        } else if (strcmp(rec->name, "__bool__") == 0) {
            std::free(rec->name);
            rec->name = strdup("__nonzero__");
        }
#endif
        rec->signature = strdup(signature.c_str());
        rec->args.shrink_to_fit();
        rec->nargs = (std::uint16_t) args;

        if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr()))
            rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr());

        detail::function_record *chain = nullptr, *chain_start = rec;
        if (rec->sibling) {
            if (PyCFunction_Check(rec->sibling.ptr())) {
                auto rec_capsule = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(rec->sibling.ptr()));
                chain = (detail::function_record *) rec_capsule;
                /* Never append a method to an overload chain of a parent class;
                   instead, hide the parent's overloads in this case */
                if (!chain->scope.is(rec->scope))
                    chain = nullptr;
            }
            // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing
            else if (!rec->sibling.is_none() && rec->name[0] != '_')
                pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) +
                        "\" with a function of the same name");
        }

        if (!chain) {
            /* No existing overload was found, create a new function object */
            rec->def = new PyMethodDef();
            std::memset(rec->def, 0, sizeof(PyMethodDef));
            rec->def->ml_name = rec->name;
            rec->def->ml_meth = reinterpret_cast<PyCFunction>(reinterpret_cast<void (*) (void)>(*dispatcher));
            rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;

            capsule rec_capsule(rec, [](void *ptr) {
                destruct((detail::function_record *) ptr);
            });

            object scope_module;
            if (rec->scope) {
                if (hasattr(rec->scope, "__module__")) {
                    scope_module = rec->scope.attr("__module__");
                } else if (hasattr(rec->scope, "__name__")) {
                    scope_module = rec->scope.attr("__name__");
                }
            }

            m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
        } else {
            /* Append at the end of the overload chain */
            m_ptr = rec->sibling.ptr();
            inc_ref();
            chain_start = chain;
            if (chain->is_method != rec->is_method)
                pybind11_fail("overloading a method with both static and instance methods is not supported; "
                    #if defined(NDEBUG)
                        "compile in debug mode for more details"
                    #else
                        "error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " +
                        std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature
                    #endif
                );
            while (chain->next)
                chain = chain->next;
            chain->next = rec;
        }

        std::string signatures;
        int index = 0;
        /* Create a nice pydoc rec including all signatures and
           docstrings of the functions in the overload chain */
        if (chain && options::show_function_signatures()) {
            // First a generic signature
            signatures += rec->name;
            signatures += "(*args, **kwargs)\n";
            signatures += "Overloaded function.\n\n";
        }
        // Then specific overload signatures
        bool first_user_def = true;
        for (auto it = chain_start; it != nullptr; it = it->next) {
            if (options::show_function_signatures()) {
                if (index > 0) signatures += "\n";
                if (chain)
                    signatures += std::to_string(++index) + ". ";
                signatures += rec->name;
                signatures += it->signature;
                signatures += "\n";
            }
            if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) {
                // If we're appending another docstring, and aren't printing function signatures, we
                // need to append a newline first:
                if (!options::show_function_signatures()) {
                    if (first_user_def) first_user_def = false;
                    else signatures += "\n";
                }
                if (options::show_function_signatures()) signatures += "\n";
                signatures += it->doc;
                if (options::show_function_signatures()) signatures += "\n";
            }
        }

        /* Install docstring */
        PyCFunctionObject *func = (PyCFunctionObject *) m_ptr;
        if (func->m_ml->ml_doc)
            std::free(const_cast<char *>(func->m_ml->ml_doc));
        func->m_ml->ml_doc = strdup(signatures.c_str());

        if (rec->is_method) {
            m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object");
            Py_DECREF(func);
        }
    }

    /// When a cpp_function is GCed, release any memory allocated by pybind11
    static void destruct(detail::function_record *rec) {
        while (rec) {
            detail::function_record *next = rec->next;
            if (rec->free_data)
                rec->free_data(rec);
            std::free((char *) rec->name);
            std::free((char *) rec->doc);
            std::free((char *) rec->signature);
            for (auto &arg: rec->args) {
                std::free(const_cast<char *>(arg.name));
                std::free(const_cast<char *>(arg.descr));
                arg.value.dec_ref();
            }
            if (rec->def) {
                std::free(const_cast<char *>(rec->def->ml_doc));
                delete rec->def;
            }
            delete rec;
            rec = next;
        }
    }

    /// Main dispatch logic for calls to functions bound using pybind11
    static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) {
        using namespace detail;

        /* Iterator over the list of potentially admissible overloads */
        function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr),
                        *it = overloads;

        /* Need to know how many arguments + keyword arguments there are to pick the right overload */
        const size_t n_args_in = (size_t) PyTuple_GET_SIZE(args_in);

        handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr,
               result = PYBIND11_TRY_NEXT_OVERLOAD;

        auto self_value_and_holder = value_and_holder();
        if (overloads->is_constructor) {
            const auto tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr());
            const auto pi = reinterpret_cast<instance *>(parent.ptr());
            self_value_and_holder = pi->get_value_and_holder(tinfo, false);

            if (!self_value_and_holder.type || !self_value_and_holder.inst) {
                PyErr_SetString(PyExc_TypeError, "__init__(self, ...) called with invalid `self` argument");
                return nullptr;
            }

            // If this value is already registered it must mean __init__ is invoked multiple times;
            // we really can't support that in C++, so just ignore the second __init__.
            if (self_value_and_holder.instance_registered())
                return none().release().ptr();
        }

        try {
            // We do this in two passes: in the first pass, we load arguments with `convert=false`;
            // in the second, we allow conversion (except for arguments with an explicit
            // py::arg().noconvert()).  This lets us prefer calls without conversion, with
            // conversion as a fallback.
            std::vector<function_call> second_pass;

            // However, if there are no overloads, we can just skip the no-convert pass entirely
            const bool overloaded = it != nullptr && it->next != nullptr;

            for (; it != nullptr; it = it->next) {

                /* For each overload:
                   1. Copy all positional arguments we were given, also checking to make sure that
                      named positional arguments weren't *also* specified via kwarg.
                   2. If we weren't given enough, try to make up the omitted ones by checking
                      whether they were provided by a kwarg matching the `py::arg("name")` name.  If
                      so, use it (and remove it from kwargs; if not, see if the function binding
                      provided a default that we can use.
                   3. Ensure that either all keyword arguments were "consumed", or that the function
                      takes a kwargs argument to accept unconsumed kwargs.
                   4. Any positional arguments still left get put into a tuple (for args), and any
                      leftover kwargs get put into a dict.
                   5. Pack everything into a vector; if we have py::args or py::kwargs, they are an
                      extra tuple or dict at the end of the positional arguments.
                   6. Call the function call dispatcher (function_record::impl)

                   If one of these fail, move on to the next overload and keep trying until we get a
                   result other than PYBIND11_TRY_NEXT_OVERLOAD.
                 */

                function_record &func = *it;
                size_t pos_args = func.nargs;    // Number of positional arguments that we need
                if (func.has_args) --pos_args;   // (but don't count py::args
                if (func.has_kwargs) --pos_args; //  or py::kwargs)

                if (!func.has_args && n_args_in > pos_args)
                    continue; // Too many arguments for this overload

                if (n_args_in < pos_args && func.args.size() < pos_args)
                    continue; // Not enough arguments given, and not enough defaults to fill in the blanks

                function_call call(func, parent);

                size_t args_to_copy = std::min(pos_args, n_args_in);
                size_t args_copied = 0;

                // 0. Inject new-style `self` argument
                if (func.is_new_style_constructor) {
                    // The `value` may have been preallocated by an old-style `__init__`
                    // if it was a preceding candidate for overload resolution.
                    if (self_value_and_holder)
                        self_value_and_holder.type->dealloc(self_value_and_holder);

                    call.init_self = PyTuple_GET_ITEM(args_in, 0);
                    call.args.push_back(reinterpret_cast<PyObject *>(&self_value_and_holder));
                    call.args_convert.push_back(false);
                    ++args_copied;
                }

                // 1. Copy any position arguments given.
                bool bad_arg = false;
                for (; args_copied < args_to_copy; ++args_copied) {
                    argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr;
                    if (kwargs_in && arg_rec && arg_rec->name && PyDict_GetItemString(kwargs_in, arg_rec->name)) {
                        bad_arg = true;
                        break;
                    }

                    handle arg(PyTuple_GET_ITEM(args_in, args_copied));
                    if (arg_rec && !arg_rec->none && arg.is_none()) {
                        bad_arg = true;
                        break;
                    }
                    call.args.push_back(arg);
                    call.args_convert.push_back(arg_rec ? arg_rec->convert : true);
                }
                if (bad_arg)
                    continue; // Maybe it was meant for another overload (issue #688)

                // We'll need to copy this if we steal some kwargs for defaults
                dict kwargs = reinterpret_borrow<dict>(kwargs_in);

                // 2. Check kwargs and, failing that, defaults that may help complete the list
                if (args_copied < pos_args) {
                    bool copied_kwargs = false;

                    for (; args_copied < pos_args; ++args_copied) {
                        const auto &arg = func.args[args_copied];

                        handle value;
                        if (kwargs_in && arg.name)
                            value = PyDict_GetItemString(kwargs.ptr(), arg.name);

                        if (value) {
                            // Consume a kwargs value
                            if (!copied_kwargs) {
                                kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr()));
                                copied_kwargs = true;
                            }
                            PyDict_DelItemString(kwargs.ptr(), arg.name);
                        } else if (arg.value) {
                            value = arg.value;
                        }

                        if (value) {
                            call.args.push_back(value);
                            call.args_convert.push_back(arg.convert);
                        }
                        else
                            break;
                    }

                    if (args_copied < pos_args)
                        continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments
                }

                // 3. Check everything was consumed (unless we have a kwargs arg)
                if (kwargs && kwargs.size() > 0 && !func.has_kwargs)
                    continue; // Unconsumed kwargs, but no py::kwargs argument to accept them

                // 4a. If we have a py::args argument, create a new tuple with leftovers
                tuple extra_args;
                if (func.has_args) {
                    if (args_to_copy == 0) {
                        // We didn't copy out any position arguments from the args_in tuple, so we
                        // can reuse it directly without copying:
                        extra_args = reinterpret_borrow<tuple>(args_in);
                    } else if (args_copied >= n_args_in) {
                        extra_args = tuple(0);
                    } else {
                        size_t args_size = n_args_in - args_copied;
                        extra_args = tuple(args_size);
                        for (size_t i = 0; i < args_size; ++i) {
                            handle item = PyTuple_GET_ITEM(args_in, args_copied + i);
                            extra_args[i] = item.inc_ref().ptr();
                        }
                    }
                    call.args.push_back(extra_args);
                    call.args_convert.push_back(false);
                }

                // 4b. If we have a py::kwargs, pass on any remaining kwargs
                if (func.has_kwargs) {
                    if (!kwargs.ptr())
                        kwargs = dict(); // If we didn't get one, send an empty one
                    call.args.push_back(kwargs);
                    call.args_convert.push_back(false);
                }

                // 5. Put everything in a vector.  Not technically step 5, we've been building it
                // in `call.args` all along.
                #if !defined(NDEBUG)
                if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs)
                    pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!");
                #endif

                std::vector<bool> second_pass_convert;
                if (overloaded) {
                    // We're in the first no-convert pass, so swap out the conversion flags for a
                    // set of all-false flags.  If the call fails, we'll swap the flags back in for
                    // the conversion-allowed call below.
                    second_pass_convert.resize(func.nargs, false);
                    call.args_convert.swap(second_pass_convert);
                }

                // 6. Call the function.
                try {
                    loader_life_support guard{};
                    result = func.impl(call);
                } catch (reference_cast_error &) {
                    result = PYBIND11_TRY_NEXT_OVERLOAD;
                }

                if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
                    break;

                if (overloaded) {
                    // The (overloaded) call failed; if the call has at least one argument that
                    // permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
                    // then add this call to the list of second pass overloads to try.
                    for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) {
                        if (second_pass_convert[i]) {
                            // Found one: swap the converting flags back in and store the call for
                            // the second pass.
                            call.args_convert.swap(second_pass_convert);
                            second_pass.push_back(std::move(call));
                            break;
                        }
                    }
                }
            }

            if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
                // The no-conversion pass finished without success, try again with conversion allowed
                for (auto &call : second_pass) {
                    try {
                        loader_life_support guard{};
                        result = call.func.impl(call);
                    } catch (reference_cast_error &) {
                        result = PYBIND11_TRY_NEXT_OVERLOAD;
                    }

                    if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
                        break;
                }
            }
        } catch (error_already_set &e) {
            e.restore();
            return nullptr;
        } catch (...) {
            /* When an exception is caught, give each registered exception
               translator a chance to translate it to a Python exception
               in reverse order of registration.

               A translator may choose to do one of the following:

                - catch the exception and call PyErr_SetString or PyErr_SetObject
                  to set a standard (or custom) Python exception, or
                - do nothing and let the exception fall through to the next translator, or
                - delegate translation to the next translator by throwing a new type of exception. */

            auto last_exception = std::current_exception();
            auto &registered_exception_translators = get_internals().registered_exception_translators;
            for (auto& translator : registered_exception_translators) {
                try {
                    translator(last_exception);
                } catch (...) {
                    last_exception = std::current_exception();
                    continue;
                }
                return nullptr;
            }
            PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!");
            return nullptr;
        }

        auto append_note_if_missing_header_is_suspected = [](std::string &msg) {
            if (msg.find("std::") != std::string::npos) {
                msg += "\n\n"
                       "Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,\n"
                       "<pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic\n"
                       "conversions are optional and require extra headers to be included\n"
                       "when compiling your pybind11 module.";
            }
        };

        if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
            if (overloads->is_operator)
                return handle(Py_NotImplemented).inc_ref().ptr();

            std::string msg = std::string(overloads->name) + "(): incompatible " +
                std::string(overloads->is_constructor ? "constructor" : "function") +
                " arguments. The following argument types are supported:\n";

            int ctr = 0;
            for (function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
                msg += "    "+ std::to_string(++ctr) + ". ";

                bool wrote_sig = false;
                if (overloads->is_constructor) {
                    // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)`
                    std::string sig = it2->signature;
                    size_t start = sig.find('(') + 7; // skip "(self: "
                    if (start < sig.size()) {
                        // End at the , for the next argument
                        size_t end = sig.find(", "), next = end + 2;
                        size_t ret = sig.rfind(" -> ");
                        // Or the ), if there is no comma:
                        if (end >= sig.size()) next = end = sig.find(')');
                        if (start < end && next < sig.size()) {
                            msg.append(sig, start, end - start);
                            msg += '(';
                            msg.append(sig, next, ret - next);
                            wrote_sig = true;
                        }
                    }
                }
                if (!wrote_sig) msg += it2->signature;

                msg += "\n";
            }
            msg += "\nInvoked with: ";
            auto args_ = reinterpret_borrow<tuple>(args_in);
            bool some_args = false;
            for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
                if (!some_args) some_args = true;
                else msg += ", ";
                msg += pybind11::repr(args_[ti]);
            }
            if (kwargs_in) {
                auto kwargs = reinterpret_borrow<dict>(kwargs_in);
                if (kwargs.size() > 0) {
                    if (some_args) msg += "; ";
                    msg += "kwargs: ";
                    bool first = true;
                    for (auto kwarg : kwargs) {
                        if (first) first = false;
                        else msg += ", ";
                        msg += pybind11::str("{}={!r}").format(kwarg.first, kwarg.second);
                    }
                }
            }

            append_note_if_missing_header_is_suspected(msg);
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else if (!result) {
            std::string msg = "Unable to convert function return value to a "
                              "Python type! The signature was\n\t";
            msg += it->signature;
            append_note_if_missing_header_is_suspected(msg);
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else {
            if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) {
                auto *pi = reinterpret_cast<instance *>(parent.ptr());
                self_value_and_holder.type->init_instance(pi, nullptr);
            }
            return result.ptr();
        }
    }
};

/// Wrapper for Python extension modules
class module : public object {
public:
    PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check)

    /// Create a new top-level Python module with the given name and docstring
    explicit module(const char *name, const char *doc = nullptr) {
        if (!options::show_user_defined_docstrings()) doc = nullptr;
#if PY_MAJOR_VERSION >= 3
        PyModuleDef *def = new PyModuleDef();
        std::memset(def, 0, sizeof(PyModuleDef));
        def->m_name = name;
        def->m_doc = doc;
        def->m_size = -1;
        Py_INCREF(def);
        m_ptr = PyModule_Create(def);
#else
        m_ptr = Py_InitModule3(name, nullptr, doc);
#endif
        if (m_ptr == nullptr)
            pybind11_fail("Internal error in module::module()");
        inc_ref();
    }

    /** \rst
        Create Python binding for a new function within the module scope. ``Func``
        can be a plain C++ function, a function pointer, or a lambda function. For
        details on the ``Extra&& ... extra`` argument, see section :ref:`extras`.
    \endrst */
    template <typename Func, typename... Extra>
    module &def(const char *name_, Func &&f, const Extra& ... extra) {
        cpp_function func(std::forward<Func>(f), name(name_), scope(*this),
                          sibling(getattr(*this, name_, none())), extra...);
        // NB: allow overwriting here because cpp_function sets up a chain with the intention of
        // overwriting (and has already checked internally that it isn't overwriting non-functions).
        add_object(name_, func, true /* overwrite */);
        return *this;
    }

    /** \rst
        Create and return a new Python submodule with the given name and docstring.
        This also works recursively, i.e.

        .. code-block:: cpp

            py::module m("example", "pybind11 example plugin");
            py::module m2 = m.def_submodule("sub", "A submodule of 'example'");
            py::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
    \endrst */
    module def_submodule(const char *name, const char *doc = nullptr) {
        std::string full_name = std::string(PyModule_GetName(m_ptr))
            + std::string(".") + std::string(name);
        auto result = reinterpret_borrow<module>(PyImport_AddModule(full_name.c_str()));
        if (doc && options::show_user_defined_docstrings())
            result.attr("__doc__") = pybind11::str(doc);
        attr(name) = result;
        return result;
    }

    /// Import and return a module or throws `error_already_set`.
    static module import(const char *name) {
        PyObject *obj = PyImport_ImportModule(name);
        if (!obj)
            throw error_already_set();
        return reinterpret_steal<module>(obj);
    }

    /// Reload the module or throws `error_already_set`.
    void reload() {
        PyObject *obj = PyImport_ReloadModule(ptr());
        if (!obj)
            throw error_already_set();
        *this = reinterpret_steal<module>(obj);
    }

    // Adds an object to the module using the given name.  Throws if an object with the given name
    // already exists.
    //
    // overwrite should almost always be false: attempting to overwrite objects that pybind11 has
    // established will, in most cases, break things.
    PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) {
        if (!overwrite && hasattr(*this, name))
            pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" +
                    std::string(name) + "\"");

        PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */);
    }
};

/// \ingroup python_builtins
/// Return a dictionary representing the global variables in the current execution frame,
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded).
inline dict globals() {
    PyObject *p = PyEval_GetGlobals();
    return reinterpret_borrow<dict>(p ? p : module::import("__main__").attr("__dict__").ptr());
}

NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
    template <typename...> friend class class_;
public:
    PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
    void initialize(const type_record &rec) {
        if (rec.scope && hasattr(rec.scope, rec.name))
            pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) +
                          "\": an object with that name is already defined");

        if (rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type))
            pybind11_fail("generic_type: type \"" + std::string(rec.name) +
                          "\" is already registered!");

        m_ptr = make_new_python_type(rec);

        /* Register supplemental type information in C++ dict */
        auto *tinfo = new detail::type_info();
        tinfo->type = (PyTypeObject *) m_ptr;
        tinfo->cpptype = rec.type;
        tinfo->type_size = rec.type_size;
        tinfo->operator_new = rec.operator_new;
        tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size);
        tinfo->init_instance = rec.init_instance;
        tinfo->dealloc = rec.dealloc;
        tinfo->simple_type = true;
        tinfo->simple_ancestors = true;
        tinfo->default_holder = rec.default_holder;
        tinfo->module_local = rec.module_local;

        auto &internals = get_internals();
        auto tindex = std::type_index(*rec.type);
        tinfo->direct_conversions = &internals.direct_conversions[tindex];
        if (rec.module_local)
            registered_local_types_cpp()[tindex] = tinfo;
        else
            internals.registered_types_cpp[tindex] = tinfo;
        internals.registered_types_py[(PyTypeObject *) m_ptr] = { tinfo };

        if (rec.bases.size() > 1 || rec.multiple_inheritance) {
            mark_parents_nonsimple(tinfo->type);
            tinfo->simple_ancestors = false;
        }
        else if (rec.bases.size() == 1) {
            auto parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr());
            tinfo->simple_ancestors = parent_tinfo->simple_ancestors;
        }

        if (rec.module_local) {
            // Stash the local typeinfo and loader so that external modules can access it.
            tinfo->module_local_load = &type_caster_generic::local_load;
            setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo));
        }
    }

    /// Helper function which tags all parents of a type using mult. inheritance
    void mark_parents_nonsimple(PyTypeObject *value) {
        auto t = reinterpret_borrow<tuple>(value->tp_bases);
        for (handle h : t) {
            auto tinfo2 = get_type_info((PyTypeObject *) h.ptr());
            if (tinfo2)
                tinfo2->simple_type = false;
            mark_parents_nonsimple((PyTypeObject *) h.ptr());
        }
    }

    void install_buffer_funcs(
            buffer_info *(*get_buffer)(PyObject *, void *),
            void *get_buffer_data) {
        PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr;
        auto tinfo = detail::get_type_info(&type->ht_type);

        if (!type->ht_type.tp_as_buffer)
            pybind11_fail(
                "To be able to register buffer protocol support for the type '" +
                std::string(tinfo->type->tp_name) +
                "' the associated class<>(..) invocation must "
                "include the pybind11::buffer_protocol() annotation!");

        tinfo->get_buffer = get_buffer;
        tinfo->get_buffer_data = get_buffer_data;
    }

    void def_property_static_impl(const char *name,
                                  handle fget, handle fset,
                                  detail::function_record *rec_fget) {
        const auto is_static = !(rec_fget->is_method && rec_fget->scope);
        const auto has_doc = rec_fget->doc && pybind11::options::show_user_defined_docstrings();

        auto property = handle((PyObject *) (is_static ? get_internals().static_property_type
                                                       : &PyProperty_Type));
        attr(name) = property(fget.ptr() ? fget : none(),
                              fset.ptr() ? fset : none(),
                              /*deleter*/none(),
                              pybind11::str(has_doc ? rec_fget->doc : ""));
    }
};

/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T, typename = void_t<decltype(static_cast<void *(*)(size_t)>(T::operator new))>>
void set_operator_new(type_record *r) { r->operator_new = &T::operator new; }

template <typename> void set_operator_new(...) { }

template <typename T, typename SFINAE = void> struct has_operator_delete : std::false_type { };
template <typename T> struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>>
    : std::true_type { };
template <typename T, typename SFINAE = void> struct has_operator_delete_size : std::false_type { };
template <typename T> struct has_operator_delete_size<T, void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>>
    : std::true_type { };
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0>
void call_operator_delete(T *p, size_t) { T::operator delete(p); }
template <typename T, enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int> = 0>
void call_operator_delete(T *p, size_t s) { T::operator delete(p, s); }

inline void call_operator_delete(void *p, size_t) { ::operator delete(p); }

NAMESPACE_END(detail)

/// Given a pointer to a member function, cast it to its `Derived` version.
/// Forward everything else unchanged.
template <typename /*Derived*/, typename F>
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) { return std::forward<F>(f); }

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) { return pmf; }

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const { return pmf; }

template <typename type_, typename... options>
class class_ : public detail::generic_type {
    template <typename T> using is_holder = detail::is_holder_type<type_, T>;
    template <typename T> using is_subtype = detail::is_strict_base_of<type_, T>;
    template <typename T> using is_base = detail::is_strict_base_of<T, type_>;
    // struct instead of using here to help MSVC:
    template <typename T> struct is_valid_class_option :
        detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};

public:
    using type = type_;
    using type_alias = detail::exactly_one_t<is_subtype, void, options...>;
    constexpr static bool has_alias = !std::is_void<type_alias>::value;
    using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>;

    static_assert(detail::all_of<is_valid_class_option<options>...>::value,
            "Unknown/invalid class_ template parameters provided");

    static_assert(!has_alias || std::is_polymorphic<type>::value,
            "Cannot use an alias class with a non-polymorphic type");

    PYBIND11_OBJECT(class_, generic_type, PyType_Check)

    template <typename... Extra>
    class_(handle scope, const char *name, const Extra &... extra) {
        using namespace detail;

        // MI can only be specified via class_ template options, not constructor parameters
        static_assert(
            none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
            (   constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
                constexpr_sum(is_base<options>::value...)   == 0 && // no template option bases
                none_of<std::is_same<multiple_inheritance, Extra>...>::value), // no multiple_inheritance attr
            "Error: multiple inheritance bases must be specified via class_ template options");

        type_record record;
        record.scope = scope;
        record.name = name;
        record.type = &typeid(type);
        record.type_size = sizeof(conditional_t<has_alias, type_alias, type>);
        record.holder_size = sizeof(holder_type);
        record.init_instance = init_instance;
        record.dealloc = dealloc;
        record.default_holder = std::is_same<holder_type, std::unique_ptr<type>>::value;

        set_operator_new<type>(&record);

        /* Register base classes specified via template arguments to class_, if any */
        PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record));

        /* Process optional arguments, if any */
        process_attributes<Extra...>::init(extra..., &record);

        generic_type::initialize(record);

        if (has_alias) {
            auto &instances = record.module_local ? registered_local_types_cpp() : get_internals().registered_types_cpp;
            instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))];
        }
    }

    template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &rec) {
        rec.add_base(typeid(Base), [](void *src) -> void * {
            return static_cast<Base *>(reinterpret_cast<type *>(src));
        });
    }

    template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &) { }

    template <typename Func, typename... Extra>
    class_ &def(const char *name_, Func&& f, const Extra&... extra) {
        cpp_function cf(method_adaptor<type>(std::forward<Func>(f)), name(name_), is_method(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        attr(cf.name()) = cf;
        return *this;
    }

    template <typename Func, typename... Extra> class_ &
    def_static(const char *name_, Func &&f, const Extra&... extra) {
        static_assert(!std::is_member_function_pointer<Func>::value,
                "def_static(...) called with a non-static member function pointer");
        cpp_function cf(std::forward<Func>(f), name(name_), scope(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        attr(cf.name()) = cf;
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute(*this, extra...);
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute_cast(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::initimpl::constructor<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::initimpl::alias_constructor<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(detail::initimpl::factory<Args...> &&init, const Extra&... extra) {
        std::move(init).execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(detail::initimpl::pickle_factory<Args...> &&pf, const Extra &...extra) {
        std::move(pf).execute(*this, extra...);
        return *this;
    }

    template <typename Func> class_& def_buffer(Func &&func) {
        struct capture { Func func; };
        capture *ptr = new capture { std::forward<Func>(func) };
        install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* {
            detail::make_caster<type> caster;
            if (!caster.load(obj, false))
                return nullptr;
            return new buffer_info(((capture *) ptr)->func(caster));
        }, ptr);
        return *this;
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...)) {
        return def_buffer([func] (type &obj) { return (obj.*func)(); });
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...) const) {
        return def_buffer([func] (const type &obj) { return (obj.*func)(); });
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) {
        static_assert(std::is_base_of<C, type>::value, "def_readwrite() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)),
                     fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this));
        def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) {
        static_assert(std::is_base_of<C, type>::value, "def_readonly() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this));
        def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)),
                     fset([pm](object, const D &value) { *pm = value; }, scope(*this));
        def_property_static(name, fget, fset, return_value_policy::reference, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this));
        def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
        return *this;
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly(name, cpp_function(method_adaptor<type>(fget)),
                                     return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property(name, fget, cpp_function(), extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property_static(name, fget, cpp_function(), extra...);
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename Setter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const Setter &fset, const Extra& ...extra) {
        return def_property(name, fget, cpp_function(method_adaptor<type>(fset)), extra...);
    }
    template <typename Getter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property(name, cpp_function(method_adaptor<type>(fget)), fset,
                            return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, fget, fset, is_method(*this), extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
        char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */
        detail::process_attributes<Extra...>::init(extra..., rec_fget);
        if (rec_fget->doc && rec_fget->doc != doc_prev) {
            free(doc_prev);
            rec_fget->doc = strdup(rec_fget->doc);
        }
        if (rec_fset) {
            doc_prev = rec_fset->doc;
            detail::process_attributes<Extra...>::init(extra..., rec_fset);
            if (rec_fset->doc && rec_fset->doc != doc_prev) {
                free(doc_prev);
                rec_fset->doc = strdup(rec_fset->doc);
            }
        }
        def_property_static_impl(name, fget, fset, rec_fget);
        return *this;
    }

private:
    /// Initialize holder object, variant 1: object derives from enable_shared_from_this
    template <typename T>
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) {
        try {
            auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>(
                    v_h.value_ptr<type>()->shared_from_this());
            if (sh) {
                new (&v_h.holder<holder_type>()) holder_type(std::move(sh));
                v_h.set_holder_constructed();
            }
        } catch (const std::bad_weak_ptr &) {}

        if (!v_h.holder_constructed() && inst->owned) {
            new (&v_h.holder<holder_type>()) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) {
        new (&v_h.holder<holder_type>()) holder_type(*reinterpret_cast<const holder_type *>(holder_ptr));
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) {
        new (&v_h.holder<holder_type>()) holder_type(std::move(*const_cast<holder_type *>(holder_ptr)));
    }

    /// Initialize holder object, variant 2: try to construct from existing holder object, if possible
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this<T>) */) {
        if (holder_ptr) {
            init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>());
            v_h.set_holder_constructed();
        } else if (inst->owned || detail::always_construct_holder<holder_type>::value) {
            new (&v_h.holder<holder_type>()) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    /// Performs instance initialization including constructing a holder and registering the known
    /// instance.  Should be called as soon as the `type` value_ptr is set for an instance.  Takes an
    /// optional pointer to an existing holder to use; if not specified and the instance is
    /// `.owned`, a new holder will be constructed to manage the value pointer.
    static void init_instance(detail::instance *inst, const void *holder_ptr) {
        auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type)));
        if (!v_h.instance_registered()) {
            register_instance(inst, v_h.value_ptr(), v_h.type);
            v_h.set_instance_registered();
        }
        init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>());
    }

    /// Deallocates an instance; via holder, if constructed; otherwise via operator delete.
    static void dealloc(detail::value_and_holder &v_h) {
        if (v_h.holder_constructed()) {
            v_h.holder<holder_type>().~holder_type();
            v_h.set_holder_constructed(false);
        }
        else {
            detail::call_operator_delete(v_h.value_ptr<type>(), v_h.type->type_size);
        }
        v_h.value_ptr() = nullptr;
    }

    static detail::function_record *get_function_record(handle h) {
        h = detail::get_function(h);
        return h ? (detail::function_record *) reinterpret_borrow<capsule>(PyCFunction_GET_SELF(h.ptr()))
                 : nullptr;
    }
};

/// Binds an existing constructor taking arguments Args...
template <typename... Args> detail::initimpl::constructor<Args...> init() { return {}; }
/// Like `init<Args...>()`, but the instance is always constructed through the alias class (even
/// when not inheriting on the Python side).
template <typename... Args> detail::initimpl::alias_constructor<Args...> init_alias() { return {}; }

/// Binds a factory function as a constructor
template <typename Func, typename Ret = detail::initimpl::factory<Func>>
Ret init(Func &&f) { return {std::forward<Func>(f)}; }

/// Dual-argument factory function: the first function is called when no alias is needed, the second
/// when an alias is needed (i.e. due to python-side inheritance).  Arguments must be identical.
template <typename CFunc, typename AFunc, typename Ret = detail::initimpl::factory<CFunc, AFunc>>
Ret init(CFunc &&c, AFunc &&a) {
    return {std::forward<CFunc>(c), std::forward<AFunc>(a)};
}

/// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type
/// returned by `__getstate__` is the same as the argument accepted by `__setstate__`.
template <typename GetState, typename SetState>
detail::initimpl::pickle_factory<GetState, SetState> pickle(GetState &&g, SetState &&s) {
    return {std::forward<GetState>(g), std::forward<SetState>(s)};
}

/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> {
public:
    using class_<Type>::def;
    using class_<Type>::def_property_readonly_static;
    using Scalar = typename std::underlying_type<Type>::type;

    template <typename... Extra>
    enum_(const handle &scope, const char *name, const Extra&... extra)
      : class_<Type>(scope, name, extra...), m_entries(), m_parent(scope) {

        constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value;

        auto m_entries_ptr = m_entries.inc_ref().ptr();
        def("__repr__", [name, m_entries_ptr](Type value) -> pybind11::str {
            for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr)) {
                if (pybind11::cast<Type>(kv.second) == value)
                    return pybind11::str("{}.{}").format(name, kv.first);
            }
            return pybind11::str("{}.???").format(name);
        });
        def_property_readonly_static("__members__", [m_entries_ptr](object /* self */) {
            dict m;
            for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr))
                m[kv.first] = kv.second;
            return m;
        }, return_value_policy::copy);
        def(init([](Scalar i) { return static_cast<Type>(i); }));
        def("__int__", [](Type value) { return (Scalar) value; });
        #if PY_MAJOR_VERSION < 3
            def("__long__", [](Type value) { return (Scalar) value; });
        #endif
        def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; });
        def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; });
        if (is_arithmetic) {
            def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; });
            def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; });
            def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; });
            def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; });
        }
        if (std::is_convertible<Type, Scalar>::value) {
            // Don't provide comparison with the underlying type if the enum isn't convertible,
            // i.e. if Type is a scoped enum, mirroring the C++ behaviour.  (NB: we explicitly
            // convert Type to Scalar below anyway because this needs to compile).
            def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; });
            def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; });
            if (is_arithmetic) {
                def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; });
                def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; });
                def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; });
                def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; });
                def("__invert__", [](const Type &value) { return ~((Scalar) value); });
                def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
                def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
                def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
                def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
                def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
                def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
                def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; });
                def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; });
                def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; });
            }
        }
        def("__hash__", [](const Type &value) { return (Scalar) value; });
        // Pickling and unpickling -- needed for use with the 'multiprocessing' module
        def(pickle([](const Type &value) { return pybind11::make_tuple((Scalar) value); },
                   [](tuple t) { return static_cast<Type>(t[0].cast<Scalar>()); }));
    }

    /// Export enumeration entries into the parent scope
    enum_& export_values() {
        for (const auto &kv : m_entries)
            m_parent.attr(kv.first) = kv.second;
        return *this;
    }

    /// Add an enumeration entry
    enum_& value(char const* name, Type value) {
        auto v = pybind11::cast(value, return_value_policy::copy);
        this->attr(name) = v;
        m_entries[pybind11::str(name)] = v;
        return *this;
    }

private:
    dict m_entries;
    handle m_parent;
};

NAMESPACE_BEGIN(detail)


inline void keep_alive_impl(handle nurse, handle patient) {
    if (!nurse || !patient)
        pybind11_fail("Could not activate keep_alive!");

    if (patient.is_none() || nurse.is_none())
        return; /* Nothing to keep alive or nothing to be kept alive by */

    auto tinfo = all_type_info(Py_TYPE(nurse.ptr()));
    if (!tinfo.empty()) {
        /* It's a pybind-registered type, so we can store the patient in the
         * internal list. */
        add_patient(nurse.ptr(), patient.ptr());
    }
    else {
        /* Fall back to clever approach based on weak references taken from
         * Boost.Python. This is not used for pybind-registered types because
         * the objects can be destroyed out-of-order in a GC pass. */
        cpp_function disable_lifesupport(
            [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); });

        weakref wr(nurse, disable_lifesupport);

        patient.inc_ref(); /* reference patient and leak the weak reference */
        (void) wr.release();
    }
}

PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) {
    auto get_arg = [&](size_t n) {
        if (n == 0)
            return ret;
        else if (n == 1 && call.init_self)
            return call.init_self;
        else if (n <= call.args.size())
            return call.args[n - 1];
        return handle();
    };

    keep_alive_impl(get_arg(Nurse), get_arg(Patient));
}

inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type) {
    auto res = get_internals().registered_types_py
#ifdef __cpp_lib_unordered_map_try_emplace
        .try_emplace(type);
#else
        .emplace(type, std::vector<detail::type_info *>());
#endif
    if (res.second) {
        // New cache entry created; set up a weak reference to automatically remove it if the type
        // gets destroyed:
        weakref((PyObject *) type, cpp_function([type](handle wr) {
            get_internals().registered_types_py.erase(type);
            wr.dec_ref();
        })).release();
    }

    return res;
}

template <typename Iterator, typename Sentinel, bool KeyIterator, return_value_policy Policy>
struct iterator_state {
    Iterator it;
    Sentinel end;
    bool first_or_done;
};

NAMESPACE_END(detail)

/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename ValueType = decltype(*std::declval<Iterator>()),
          typename... Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    typedef detail::iterator_state<Iterator, Sentinel, false, Policy> state;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator", pybind11::module_local())
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> ValueType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return *s.it;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename KeyType = decltype((*std::declval<Iterator>()).first),
          typename... Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    typedef detail::iterator_state<Iterator, Sentinel, true, Policy> state;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator", pybind11::module_local())
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> KeyType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return (*s.it).first;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) {
    return make_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) {
    return make_key_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

template <typename InputType, typename OutputType> void implicitly_convertible() {
    struct set_flag {
        bool &flag;
        set_flag(bool &flag) : flag(flag) { flag = true; }
        ~set_flag() { flag = false; }
    };
    auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
        static bool currently_used = false;
        if (currently_used) // implicit conversions are non-reentrant
            return nullptr;
        set_flag flag_helper(currently_used);
        if (!detail::make_caster<InputType>().load(obj, false))
            return nullptr;
        tuple args(1);
        args[0] = obj;
        PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
        if (result == nullptr)
            PyErr_Clear();
        return result;
    };

    if (auto tinfo = detail::get_type_info(typeid(OutputType)))
        tinfo->implicit_conversions.push_back(implicit_caster);
    else
        pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
}

template <typename ExceptionTranslator>
void register_exception_translator(ExceptionTranslator&& translator) {
    detail::get_internals().registered_exception_translators.push_front(
        std::forward<ExceptionTranslator>(translator));
}

/**
 * Wrapper to generate a new Python exception type.
 *
 * This should only be used with PyErr_SetString for now.
 * It is not (yet) possible to use as a py::base.
 * Template type argument is reserved for future use.
 */
template <typename type>
class exception : public object {
public:
    exception(handle scope, const char *name, PyObject *base = PyExc_Exception) {
        std::string full_name = scope.attr("__name__").cast<std::string>() +
                                std::string(".") + name;
        m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base, NULL);
        if (hasattr(scope, name))
            pybind11_fail("Error during initialization: multiple incompatible "
                          "definitions with name \"" + std::string(name) + "\"");
        scope.attr(name) = *this;
    }

    // Sets the current python exception to this exception object with the given message
    void operator()(const char *message) {
        PyErr_SetString(m_ptr, message);
    }
};

/**
 * Registers a Python exception in `m` of the given `name` and installs an exception translator to
 * translate the C++ exception to the created Python exception using the exceptions what() method.
 * This is intended for simple exception translations; for more complex translation, register the
 * exception object and translator directly.
 */
template <typename CppException>
exception<CppException> &register_exception(handle scope,
                                            const char *name,
                                            PyObject *base = PyExc_Exception) {
    static exception<CppException> ex(scope, name, base);
    register_exception_translator([](std::exception_ptr p) {
        if (!p) return;
        try {
            std::rethrow_exception(p);
        } catch (const CppException &e) {
            ex(e.what());
        }
    });
    return ex;
}

NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) {
    auto strings = tuple(args.size());
    for (size_t i = 0; i < args.size(); ++i) {
        strings[i] = str(args[i]);
    }
    auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" ");
    auto line = sep.attr("join")(strings);

    object file;
    if (kwargs.contains("file")) {
        file = kwargs["file"].cast<object>();
    } else {
        try {
            file = module::import("sys").attr("stdout");
        } catch (const error_already_set &) {
            /* If print() is called from code that is executed as
               part of garbage collection during interpreter shutdown,
               importing 'sys' can fail. Give up rather than crashing the
               interpreter in this case. */
            return;
        }
    }

    auto write = file.attr("write");
    write(line);
    write(kwargs.contains("end") ? kwargs["end"] : cast("\n"));

    if (kwargs.contains("flush") && kwargs["flush"].cast<bool>())
        file.attr("flush")();
}
NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
    auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
    detail::print(c.args(), c.kwargs());
}

#if defined(WITH_THREAD) && !defined(PYPY_VERSION)

/* The functions below essentially reproduce the PyGILState_* API using a RAII
 * pattern, but there are a few important differences:
 *
 * 1. When acquiring the GIL from an non-main thread during the finalization
 *    phase, the GILState API blindly terminates the calling thread, which
 *    is often not what is wanted. This API does not do this.
 *
 * 2. The gil_scoped_release function can optionally cut the relationship
 *    of a PyThreadState and its associated thread, which allows moving it to
 *    another thread (this is a fairly rare/advanced use case).
 *
 * 3. The reference count of an acquired thread state can be controlled. This
 *    can be handy to prevent cases where callbacks issued from an external
 *    thread would otherwise constantly construct and destroy thread state data
 *    structures.
 *
 * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
 * example which uses features 2 and 3 to migrate the Python thread of
 * execution to another thread (to run the event loop on the original thread,
 * in this case).
 */

class gil_scoped_acquire {
public:
    PYBIND11_NOINLINE gil_scoped_acquire() {
        auto const &internals = detail::get_internals();
        tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate);

        if (!tstate) {
            tstate = PyThreadState_New(internals.istate);
            #if !defined(NDEBUG)
                if (!tstate)
                    pybind11_fail("scoped_acquire: could not create thread state!");
            #endif
            tstate->gilstate_counter = 0;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(internals.tstate);
            #endif
            PyThread_set_key_value(internals.tstate, tstate);
        } else {
            release = detail::get_thread_state_unchecked() != tstate;
        }

        if (release) {
            /* Work around an annoying assertion in PyThreadState_Swap */
            #if defined(Py_DEBUG)
                PyInterpreterState *interp = tstate->interp;
                tstate->interp = nullptr;
            #endif
            PyEval_AcquireThread(tstate);
            #if defined(Py_DEBUG)
                tstate->interp = interp;
            #endif
        }

        inc_ref();
    }

    void inc_ref() {
        ++tstate->gilstate_counter;
    }

    PYBIND11_NOINLINE void dec_ref() {
        --tstate->gilstate_counter;
        #if !defined(NDEBUG)
            if (detail::get_thread_state_unchecked() != tstate)
                pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
            if (tstate->gilstate_counter < 0)
                pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
        #endif
        if (tstate->gilstate_counter == 0) {
            #if !defined(NDEBUG)
                if (!release)
                    pybind11_fail("scoped_acquire::dec_ref(): internal error!");
            #endif
            PyThreadState_Clear(tstate);
            PyThreadState_DeleteCurrent();
            PyThread_delete_key_value(detail::get_internals().tstate);
            release = false;
        }
    }

    PYBIND11_NOINLINE ~gil_scoped_acquire() {
        dec_ref();
        if (release)
           PyEval_SaveThread();
    }
private:
    PyThreadState *tstate = nullptr;
    bool release = true;
};

class gil_scoped_release {
public:
    explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
        // `get_internals()` must be called here unconditionally in order to initialize
        // `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
        // initialization race could occur as multiple threads try `gil_scoped_acquire`.
        const auto &internals = detail::get_internals();
        tstate = PyEval_SaveThread();
        if (disassoc) {
            auto key = internals.tstate;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(key);
            #else
                PyThread_set_key_value(key, nullptr);
            #endif
        }
    }
    ~gil_scoped_release() {
        if (!tstate)
            return;
        PyEval_RestoreThread(tstate);
        if (disassoc) {
            auto key = detail::get_internals().tstate;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(key);
            #endif
            PyThread_set_key_value(key, tstate);
        }
    }
private:
    PyThreadState *tstate;
    bool disassoc;
};
#elif defined(PYPY_VERSION)
class gil_scoped_acquire {
    PyGILState_STATE state;
public:
    gil_scoped_acquire() { state = PyGILState_Ensure(); }
    ~gil_scoped_acquire() { PyGILState_Release(state); }
};

class gil_scoped_release {
    PyThreadState *state;
public:
    gil_scoped_release() { state = PyEval_SaveThread(); }
    ~gil_scoped_release() { PyEval_RestoreThread(state); }
};
#else
class gil_scoped_acquire { };
class gil_scoped_release { };
#endif

error_already_set::~error_already_set() {
    if (type) {
        gil_scoped_acquire gil;
        type.release().dec_ref();
        value.release().dec_ref();
        trace.release().dec_ref();
    }
}

inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name)  {
    handle self = detail::get_object_handle(this_ptr, this_type);
    if (!self)
        return function();
    handle type = self.get_type();
    auto key = std::make_pair(type.ptr(), name);

    /* Cache functions that aren't overloaded in Python to avoid
       many costly Python dictionary lookups below */
    auto &cache = detail::get_internals().inactive_overload_cache;
    if (cache.find(key) != cache.end())
        return function();

    function overload = getattr(self, name, function());
    if (overload.is_cpp_function()) {
        cache.insert(key);
        return function();
    }

    /* Don't call dispatch code if invoked from overridden function.
       Unfortunately this doesn't work on PyPy. */
#if !defined(PYPY_VERSION)
    PyFrameObject *frame = PyThreadState_Get()->frame;
    if (frame && (std::string) str(frame->f_code->co_name) == name &&
        frame->f_code->co_argcount > 0) {
        PyFrame_FastToLocals(frame);
        PyObject *self_caller = PyDict_GetItem(
            frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
        if (self_caller == self.ptr())
            return function();
    }
#else
    /* PyPy currently doesn't provide a detailed cpyext emulation of
       frame objects, so we have to emulate this using Python. This
       is going to be slow..*/
    dict d; d["self"] = self; d["name"] = pybind11::str(name);
    PyObject *result = PyRun_String(
        "import inspect\n"
        "frame = inspect.currentframe()\n"
        "if frame is not None:\n"
        "    frame = frame.f_back\n"
        "    if frame is not None and str(frame.f_code.co_name) == name and "
        "frame.f_code.co_argcount > 0:\n"
        "        self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n"
        "        if self_caller == self:\n"
        "            self = None\n",
        Py_file_input, d.ptr(), d.ptr());
    if (result == nullptr)
        throw error_already_set();
    if (d["self"].is_none())
        return function();
    Py_DECREF(result);
#endif

    return overload;
}

template <class T> function get_overload(const T *this_ptr, const char *name) {
    auto tinfo = detail::get_type_info(typeid(T));
    return tinfo ? get_type_overload(this_ptr, tinfo, name) : function();
}

#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \
        pybind11::gil_scoped_acquire gil; \
        pybind11::function overload = pybind11::get_overload(static_cast<const cname *>(this), name); \
        if (overload) { \
            auto o = overload(__VA_ARGS__); \
            if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \
                static pybind11::detail::overload_caster_t<ret_type> caster; \
                return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \
            } \
            else return pybind11::detail::cast_safe<ret_type>(std::move(o)); \
        } \
    }

#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
    return cname::fn(__VA_ARGS__)

#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
    pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\"");

#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
    PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)

#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
    PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)

NAMESPACE_END(PYBIND11_NAMESPACE)

#if defined(_MSC_VER)
#  pragma warning(pop)
#elif defined(__INTEL_COMPILER)
/* Leave ignored warnings on */
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic pop
#endif