summaryrefslogtreecommitdiff
path: root/ext/pybind11/tests/test_class.cpp
blob: 222190617012c2ea600d31486a0ed029f0caa2c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
    tests/test_class.cpp -- test py::class_ definitions and basic functionality

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include "pybind11_tests.h"
#include "constructor_stats.h"
#include "local_bindings.h"

TEST_SUBMODULE(class_, m) {
    // test_instance
    struct NoConstructor {
        static NoConstructor *new_instance() {
            auto *ptr = new NoConstructor();
            print_created(ptr, "via new_instance");
            return ptr;
        }
        ~NoConstructor() { print_destroyed(this); }
    };

    py::class_<NoConstructor>(m, "NoConstructor")
        .def_static("new_instance", &NoConstructor::new_instance, "Return an instance");

    // test_inheritance
    class Pet {
    public:
        Pet(const std::string &name, const std::string &species)
            : m_name(name), m_species(species) {}
        std::string name() const { return m_name; }
        std::string species() const { return m_species; }
    private:
        std::string m_name;
        std::string m_species;
    };

    class Dog : public Pet {
    public:
        Dog(const std::string &name) : Pet(name, "dog") {}
        std::string bark() const { return "Woof!"; }
    };

    class Rabbit : public Pet {
    public:
        Rabbit(const std::string &name) : Pet(name, "parrot") {}
    };

    class Hamster : public Pet {
    public:
        Hamster(const std::string &name) : Pet(name, "rodent") {}
    };

    class Chimera : public Pet {
        Chimera() : Pet("Kimmy", "chimera") {}
    };

    py::class_<Pet> pet_class(m, "Pet");
    pet_class
        .def(py::init<std::string, std::string>())
        .def("name", &Pet::name)
        .def("species", &Pet::species);

    /* One way of declaring a subclass relationship: reference parent's class_ object */
    py::class_<Dog>(m, "Dog", pet_class)
        .def(py::init<std::string>());

    /* Another way of declaring a subclass relationship: reference parent's C++ type */
    py::class_<Rabbit, Pet>(m, "Rabbit")
        .def(py::init<std::string>());

    /* And another: list parent in class template arguments */
    py::class_<Hamster, Pet>(m, "Hamster")
        .def(py::init<std::string>());

    /* Constructors are not inherited by default */
    py::class_<Chimera, Pet>(m, "Chimera");

    m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); });
    m.def("dog_bark", [](const Dog &dog) { return dog.bark(); });

    // test_automatic_upcasting
    struct BaseClass { virtual ~BaseClass() {} };
    struct DerivedClass1 : BaseClass { };
    struct DerivedClass2 : BaseClass { };

    py::class_<BaseClass>(m, "BaseClass").def(py::init<>());
    py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>());
    py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>());

    m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); });
    m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); });
    m.def("return_class_n", [](int n) -> BaseClass* {
        if (n == 1) return new DerivedClass1();
        if (n == 2) return new DerivedClass2();
        return new BaseClass();
    });
    m.def("return_none", []() -> BaseClass* { return nullptr; });

    // test_isinstance
    m.def("check_instances", [](py::list l) {
        return py::make_tuple(
            py::isinstance<py::tuple>(l[0]),
            py::isinstance<py::dict>(l[1]),
            py::isinstance<Pet>(l[2]),
            py::isinstance<Pet>(l[3]),
            py::isinstance<Dog>(l[4]),
            py::isinstance<Rabbit>(l[5]),
            py::isinstance<UnregisteredType>(l[6])
        );
    });

    // test_mismatched_holder
    struct MismatchBase1 { };
    struct MismatchDerived1 : MismatchBase1 { };

    struct MismatchBase2 { };
    struct MismatchDerived2 : MismatchBase2 { };

    m.def("mismatched_holder_1", []() {
        auto mod = py::module::import("__main__");
        py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1");
        py::class_<MismatchDerived1, MismatchBase1>(mod, "MismatchDerived1");
    });
    m.def("mismatched_holder_2", []() {
        auto mod = py::module::import("__main__");
        py::class_<MismatchBase2>(mod, "MismatchBase2");
        py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>,
                   MismatchBase2>(mod, "MismatchDerived2");
    });

    // test_override_static
    // #511: problem with inheritance + overwritten def_static
    struct MyBase {
        static std::unique_ptr<MyBase> make() {
            return std::unique_ptr<MyBase>(new MyBase());
        }
    };

    struct MyDerived : MyBase {
        static std::unique_ptr<MyDerived> make() {
            return std::unique_ptr<MyDerived>(new MyDerived());
        }
    };

    py::class_<MyBase>(m, "MyBase")
        .def_static("make", &MyBase::make);

    py::class_<MyDerived, MyBase>(m, "MyDerived")
        .def_static("make", &MyDerived::make)
        .def_static("make2", &MyDerived::make);

    // test_implicit_conversion_life_support
    struct ConvertibleFromUserType {
        int i;

        ConvertibleFromUserType(UserType u) : i(u.value()) { }
    };

    py::class_<ConvertibleFromUserType>(m, "AcceptsUserType")
        .def(py::init<UserType>());
    py::implicitly_convertible<UserType, ConvertibleFromUserType>();

    m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; });
    m.def("implicitly_convert_variable", [](py::object o) {
        // `o` is `UserType` and `r` is a reference to a temporary created by implicit
        // conversion. This is valid when called inside a bound function because the temp
        // object is attached to the same life support system as the arguments.
        const auto &r = o.cast<const ConvertibleFromUserType &>();
        return r.i;
    });
    m.add_object("implicitly_convert_variable_fail", [&] {
        auto f = [](PyObject *, PyObject *args) -> PyObject * {
            auto o = py::reinterpret_borrow<py::tuple>(args)[0];
            try { // It should fail here because there is no life support.
                o.cast<const ConvertibleFromUserType &>();
            } catch (const py::cast_error &e) {
                return py::str(e.what()).release().ptr();
            }
            return py::str().release().ptr();
        };

        auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr};
        return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, nullptr, m.ptr()));
    }());

    // test_operator_new_delete
    struct HasOpNewDel {
        std::uint64_t i;
        static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; }
        static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); }
    };
    struct HasOpNewDelSize {
        std::uint32_t i;
        static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; }
        static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); }
    };
    struct AliasedHasOpNewDelSize {
        std::uint64_t i;
        static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; }
        static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); }
        virtual ~AliasedHasOpNewDelSize() = default;
    };
    struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize {
        PyAliasedHasOpNewDelSize() = default;
        PyAliasedHasOpNewDelSize(int) { }
        std::uint64_t j;
    };
    struct HasOpNewDelBoth {
        std::uint32_t i[8];
        static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); }
        static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; }
        static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); }
        static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); }
    };
    py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>());
    py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>());
    py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>());
    py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize");
    aliased.def(py::init<>());
    aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize));
    aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize));

    // This test is actually part of test_local_bindings (test_duplicate_local), but we need a
    // definition in a different compilation unit within the same module:
    bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local());

    // test_bind_protected_functions
    class ProtectedA {
    protected:
        int foo() const { return value; }

    private:
        int value = 42;
    };

    class PublicistA : public ProtectedA {
    public:
        using ProtectedA::foo;
    };

    py::class_<ProtectedA>(m, "ProtectedA")
        .def(py::init<>())
#if !defined(_MSC_VER) || _MSC_VER >= 1910
        .def("foo", &PublicistA::foo);
#else
        .def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo));
#endif

    class ProtectedB {
    public:
        virtual ~ProtectedB() = default;

    protected:
        virtual int foo() const { return value; }

    private:
        int value = 42;
    };

    class TrampolineB : public ProtectedB {
    public:
        int foo() const override { PYBIND11_OVERLOAD(int, ProtectedB, foo, ); }
    };

    class PublicistB : public ProtectedB {
    public:
        using ProtectedB::foo;
    };

    py::class_<ProtectedB, TrampolineB>(m, "ProtectedB")
        .def(py::init<>())
#if !defined(_MSC_VER) || _MSC_VER >= 1910
        .def("foo", &PublicistB::foo);
#else
        .def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo));
#endif

    // test_brace_initialization
    struct BraceInitialization {
        int field1;
        std::string field2;
    };

    py::class_<BraceInitialization>(m, "BraceInitialization")
        .def(py::init<int, const std::string &>())
        .def_readwrite("field1", &BraceInitialization::field1)
        .def_readwrite("field2", &BraceInitialization::field2);

    // test_reentrant_implicit_conversion_failure
    // #1035: issue with runaway reentrant implicit conversion
    struct BogusImplicitConversion {
        BogusImplicitConversion(const BogusImplicitConversion &) { }
    };

    py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion")
        .def(py::init<const BogusImplicitConversion &>());

    py::implicitly_convertible<int, BogusImplicitConversion>();
}

template <int N> class BreaksBase { public: virtual ~BreaksBase() = default; };
template <int N> class BreaksTramp : public BreaksBase<N> {};
// These should all compile just fine:
typedef py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>> DoesntBreak1;
typedef py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>> DoesntBreak2;
typedef py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>> DoesntBreak3;
typedef py::class_<BreaksBase<4>, BreaksTramp<4>> DoesntBreak4;
typedef py::class_<BreaksBase<5>> DoesntBreak5;
typedef py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>> DoesntBreak6;
typedef py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>> DoesntBreak7;
typedef py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>> DoesntBreak8;
#define CHECK_BASE(N) static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<N>>::value, \
        "DoesntBreak" #N " has wrong type!")
CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8);
#define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<N>>::value, \
        "DoesntBreak" #N " has wrong type_alias!")
#define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void<typename DoesntBreak##N::type_alias>::value, \
        "DoesntBreak" #N " has type alias, but shouldn't!")
CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8);
#define CHECK_HOLDER(N, TYPE) static_assert(std::is_same<typename DoesntBreak##N::holder_type, std::TYPE##_ptr<BreaksBase<N>>>::value, \
        "DoesntBreak" #N " has wrong holder_type!")
CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique);
CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared);

// There's no nice way to test that these fail because they fail to compile; leave them here,
// though, so that they can be manually tested by uncommenting them (and seeing that compilation
// failures occurs).

// We have to actually look into the type: the typedef alone isn't enough to instantiate the type:
#define CHECK_BROKEN(N) static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-N>>::value, \
        "Breaks1 has wrong type!");

//// Two holder classes:
//typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1;
//CHECK_BROKEN(1);
//// Two aliases:
//typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2;
//CHECK_BROKEN(2);
//// Holder + 2 aliases
//typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3;
//CHECK_BROKEN(3);
//// Alias + 2 holders
//typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4;
//CHECK_BROKEN(4);
//// Invalid option (not a subclass or holder)
//typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5;
//CHECK_BROKEN(5);
//// Invalid option: multiple inheritance not supported:
//template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {};
//typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8;
//CHECK_BROKEN(8);