summaryrefslogtreecommitdiff
path: root/ext/pybind11/tests/test_stl.cpp
blob: 7d53e9c18d9d916cc488a023ec03e60481484ff3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
    tests/test_stl.cpp -- STL type casters

    Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#include "pybind11_tests.h"
#include <pybind11/stl.h>

// Test with `std::variant` in C++17 mode, or with `boost::variant` in C++11/14
#if PYBIND11_HAS_VARIANT
using std::variant;
#elif defined(PYBIND11_TEST_BOOST) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
#  include <boost/variant.hpp>
#  define PYBIND11_HAS_VARIANT 1
using boost::variant;

namespace pybind11 { namespace detail {
template <typename... Ts>
struct type_caster<boost::variant<Ts...>> : variant_caster<boost::variant<Ts...>> {};

template <>
struct visit_helper<boost::variant> {
    template <typename... Args>
    static auto call(Args &&...args) -> decltype(boost::apply_visitor(args...)) {
        return boost::apply_visitor(args...);
    }
};
}} // namespace pybind11::detail
#endif

/// Issue #528: templated constructor
struct TplCtorClass {
    template <typename T> TplCtorClass(const T &) { }
    bool operator==(const TplCtorClass &) const { return true; }
};

namespace std {
    template <>
    struct hash<TplCtorClass> { size_t operator()(const TplCtorClass &) const { return 0; } };
}


TEST_SUBMODULE(stl, m) {
    // test_vector
    m.def("cast_vector", []() { return std::vector<int>{1}; });
    m.def("load_vector", [](const std::vector<int> &v) { return v.at(0) == 1 && v.at(1) == 2; });
    // `std::vector<bool>` is special because it returns proxy objects instead of references
    m.def("cast_bool_vector", []() { return std::vector<bool>{true, false}; });
    m.def("load_bool_vector", [](const std::vector<bool> &v) {
        return v.at(0) == true && v.at(1) == false;
    });
    // Unnumbered regression (caused by #936): pointers to stl containers aren't castable
    static std::vector<RValueCaster> lvv{2};
    m.def("cast_ptr_vector", []() { return &lvv; });

    // test_array
    m.def("cast_array", []() { return std::array<int, 2> {{1 , 2}}; });
    m.def("load_array", [](const std::array<int, 2> &a) { return a[0] == 1 && a[1] == 2; });

    // test_valarray
    m.def("cast_valarray", []() { return std::valarray<int>{1, 4, 9}; });
    m.def("load_valarray", [](const std::valarray<int>& v) {
        return v.size() == 3 && v[0] == 1 && v[1] == 4 && v[2] == 9;
    });

    // test_map
    m.def("cast_map", []() { return std::map<std::string, std::string>{{"key", "value"}}; });
    m.def("load_map", [](const std::map<std::string, std::string> &map) {
        return map.at("key") == "value" && map.at("key2") == "value2";
    });

    // test_set
    m.def("cast_set", []() { return std::set<std::string>{"key1", "key2"}; });
    m.def("load_set", [](const std::set<std::string> &set) {
        return set.count("key1") && set.count("key2") && set.count("key3");
    });

    // test_recursive_casting
    m.def("cast_rv_vector", []() { return std::vector<RValueCaster>{2}; });
    m.def("cast_rv_array", []() { return std::array<RValueCaster, 3>(); });
    // NB: map and set keys are `const`, so while we technically do move them (as `const Type &&`),
    // casters don't typically do anything with that, which means they fall to the `const Type &`
    // caster.
    m.def("cast_rv_map", []() { return std::unordered_map<std::string, RValueCaster>{{"a", RValueCaster{}}}; });
    m.def("cast_rv_nested", []() {
        std::vector<std::array<std::list<std::unordered_map<std::string, RValueCaster>>, 2>> v;
        v.emplace_back(); // add an array
        v.back()[0].emplace_back(); // add a map to the array
        v.back()[0].back().emplace("b", RValueCaster{});
        v.back()[0].back().emplace("c", RValueCaster{});
        v.back()[1].emplace_back(); // add a map to the array
        v.back()[1].back().emplace("a", RValueCaster{});
        return v;
    });
    static std::array<RValueCaster, 2> lva;
    static std::unordered_map<std::string, RValueCaster> lvm{{"a", RValueCaster{}}, {"b", RValueCaster{}}};
    static std::unordered_map<std::string, std::vector<std::list<std::array<RValueCaster, 2>>>> lvn;
    lvn["a"].emplace_back(); // add a list
    lvn["a"].back().emplace_back(); // add an array
    lvn["a"].emplace_back(); // another list
    lvn["a"].back().emplace_back(); // add an array
    lvn["b"].emplace_back(); // add a list
    lvn["b"].back().emplace_back(); // add an array
    lvn["b"].back().emplace_back(); // add another array
    m.def("cast_lv_vector", []() -> const decltype(lvv) & { return lvv; });
    m.def("cast_lv_array", []() -> const decltype(lva) & { return lva; });
    m.def("cast_lv_map", []() -> const decltype(lvm) & { return lvm; });
    m.def("cast_lv_nested", []() -> const decltype(lvn) & { return lvn; });
    // #853:
    m.def("cast_unique_ptr_vector", []() {
        std::vector<std::unique_ptr<UserType>> v;
        v.emplace_back(new UserType{7});
        v.emplace_back(new UserType{42});
        return v;
    });

    // test_move_out_container
    struct MoveOutContainer {
        struct Value { int value; };
        std::list<Value> move_list() const { return {{0}, {1}, {2}}; }
    };
    py::class_<MoveOutContainer::Value>(m, "MoveOutContainerValue")
        .def_readonly("value", &MoveOutContainer::Value::value);
    py::class_<MoveOutContainer>(m, "MoveOutContainer")
        .def(py::init<>())
        .def_property_readonly("move_list", &MoveOutContainer::move_list);

    // Class that can be move- and copy-constructed, but not assigned
    struct NoAssign {
        int value;

        explicit NoAssign(int value = 0) : value(value) { }
        NoAssign(const NoAssign &) = default;
        NoAssign(NoAssign &&) = default;

        NoAssign &operator=(const NoAssign &) = delete;
        NoAssign &operator=(NoAssign &&) = delete;
    };
    py::class_<NoAssign>(m, "NoAssign", "Class with no C++ assignment operators")
        .def(py::init<>())
        .def(py::init<int>());

#ifdef PYBIND11_HAS_OPTIONAL
    // test_optional
    m.attr("has_optional") = true;

    using opt_int = std::optional<int>;
    using opt_no_assign = std::optional<NoAssign>;
    m.def("double_or_zero", [](const opt_int& x) -> int {
        return x.value_or(0) * 2;
    });
    m.def("half_or_none", [](int x) -> opt_int {
        return x ? opt_int(x / 2) : opt_int();
    });
    m.def("test_nullopt", [](opt_int x) {
        return x.value_or(42);
    }, py::arg_v("x", std::nullopt, "None"));
    m.def("test_no_assign", [](const opt_no_assign &x) {
        return x ? x->value : 42;
    }, py::arg_v("x", std::nullopt, "None"));

    m.def("nodefer_none_optional", [](std::optional<int>) { return true; });
    m.def("nodefer_none_optional", [](py::none) { return false; });
#endif

#ifdef PYBIND11_HAS_EXP_OPTIONAL
    // test_exp_optional
    m.attr("has_exp_optional") = true;

    using exp_opt_int = std::experimental::optional<int>;
    using exp_opt_no_assign = std::experimental::optional<NoAssign>;
    m.def("double_or_zero_exp", [](const exp_opt_int& x) -> int {
        return x.value_or(0) * 2;
    });
    m.def("half_or_none_exp", [](int x) -> exp_opt_int {
        return x ? exp_opt_int(x / 2) : exp_opt_int();
    });
    m.def("test_nullopt_exp", [](exp_opt_int x) {
        return x.value_or(42);
    }, py::arg_v("x", std::experimental::nullopt, "None"));
    m.def("test_no_assign_exp", [](const exp_opt_no_assign &x) {
        return x ? x->value : 42;
    }, py::arg_v("x", std::experimental::nullopt, "None"));
#endif

#ifdef PYBIND11_HAS_VARIANT
    static_assert(std::is_same<py::detail::variant_caster_visitor::result_type, py::handle>::value,
                  "visitor::result_type is required by boost::variant in C++11 mode");

    struct visitor {
        using result_type = const char *;

        result_type operator()(int) { return "int"; }
        result_type operator()(std::string) { return "std::string"; }
        result_type operator()(double) { return "double"; }
        result_type operator()(std::nullptr_t) { return "std::nullptr_t"; }
    };

    // test_variant
    m.def("load_variant", [](variant<int, std::string, double, std::nullptr_t> v) {
        return py::detail::visit_helper<variant>::call(visitor(), v);
    });
    m.def("load_variant_2pass", [](variant<double, int> v) {
        return py::detail::visit_helper<variant>::call(visitor(), v);
    });
    m.def("cast_variant", []() {
        using V = variant<int, std::string>;
        return py::make_tuple(V(5), V("Hello"));
    });
#endif

    // #528: templated constructor
    // (no python tests: the test here is that this compiles)
    m.def("tpl_ctor_vector", [](std::vector<TplCtorClass> &) {});
    m.def("tpl_ctor_map", [](std::unordered_map<TplCtorClass, TplCtorClass> &) {});
    m.def("tpl_ctor_set", [](std::unordered_set<TplCtorClass> &) {});
#if defined(PYBIND11_HAS_OPTIONAL)
    m.def("tpl_constr_optional", [](std::optional<TplCtorClass> &) {});
#elif defined(PYBIND11_HAS_EXP_OPTIONAL)
    m.def("tpl_constr_optional", [](std::experimental::optional<TplCtorClass> &) {});
#endif

    // test_vec_of_reference_wrapper
    // #171: Can't return STL structures containing reference wrapper
    m.def("return_vec_of_reference_wrapper", [](std::reference_wrapper<UserType> p4) {
        static UserType p1{1}, p2{2}, p3{3};
        return std::vector<std::reference_wrapper<UserType>> {
            std::ref(p1), std::ref(p2), std::ref(p3), p4
        };
    });

    // test_stl_pass_by_pointer
    m.def("stl_pass_by_pointer", [](std::vector<int>* v) { return *v; }, "v"_a=nullptr);
}