summaryrefslogtreecommitdiff
path: root/python/m5/config.py
blob: 2db2164fc4564b3a9a6537cdcebcc6a1003a42e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
# Copyright (c) 2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import generators
import os, re, sys, types, inspect

from m5 import panic, env
from convert import *
from multidict import multidict

noDot = False
try:
    import pydot
except:
    noDot = True

class Singleton(type):
    def __call__(cls, *args, **kwargs):
        if hasattr(cls, '_instance'):
            return cls._instance

        cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
        return cls._instance

#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the deisred simulation
# configuration.  For now, the Python emits a .ini file that can be
# parsed by M5.  In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name.  The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class).  To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object.  The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements.  For example:
#
# cache = BaseCache('my_cache', root, size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# (The first two constructor arguments specify the name of the created
# cache and its parent node in the hierarchy.)
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications.  This
# allows parameter validity checking in the Python code.  Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively.  This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# The Python module provides another class, ConfigNode, which is a
# superclass of SimObject.  ConfigNode implements the parent/child
# relationship for building the configuration hierarchy tree.
# Concrete instances of ConfigNode can be used to group objects in the
# hierarchy, but do not correspond to SimObjects themselves (like a
# .ini section with "children=" but no "type=".
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.  See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################

#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior.  In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables.  These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters.  These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary.  Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children.  The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator).  Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.

# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited.  Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute.  Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments.  Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation.  To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################

class Proxy(object):
    def __init__(self, path):
        self._object = None
        if path == 'any':
            self._path = None
        else:
            # path is a list of (attr,index) tuples
            self._path = [(path,None)]
        self._index = None
        self._multiplier = None

    def __getattr__(self, attr):
        # python uses __bases__ internally for inheritance
        if attr == '__bases__':
            return super(Proxy, self).__getattr__(self, attr)
        if (self._path == None):
            panic("Can't add attributes to 'any' proxy")
        self._path.append((attr,None))
        return self

    def __setattr__(self, attr, value):
        if not attr.startswith('_'):
            raise AttributeError, 'cannot set attribute %s' % attr
        super(Proxy, self).__setattr__(attr, value)

    # support indexing on proxies (e.g., parent.cpu[0])
    def __getitem__(self, key):
        if not isinstance(key, int):
            raise TypeError, "Proxy object requires integer index"
        if self._path == None:
            raise IndexError, "Index applied to 'any' proxy"
        # replace index portion of last path element with new index
        self._path[-1] = (self._path[-1][0], key)
        return self

    # support multiplying proxies by constants
    def __mul__(self, other):
        if not isinstance(other, (int, float)):
            raise TypeError, "Proxy multiplier must be integer"
        if self._multiplier == None:
            self._multiplier = other
        else:
            # support chained multipliers
            self._multiplier *= other
        return self

    __rmul__ = __mul__

    def _mulcheck(self, result):
        if self._multiplier == None:
            return result
        if not isinstance(result, int):
            # this was an error, but for now we'll assume if it's not
            # an int it must be a Frequency (yuk)
            result = Frequency._convert(result)
        # assuming we're dealing with a frequency here, turn it into
        # a string and give it a 't' suffix so the Frequency._convert
        # doesn't choke on it later.
        return ("%d" % int(round((result * self._multiplier)))) + 't'

    def unproxy(self, base, ptype):
        obj = base
        done = False
        while not done:
            if obj is None:
                raise AttributeError, \
                      'Parent of %s type %s not found at path %s' \
                      % (base.name, ptype, self._path)

            result, done = obj.find(ptype, self._path)
            obj = obj.parent

        if isinstance(result, Proxy):
            result = result.unproxy(obj, ptype)

        return self._mulcheck(result)

    def getindex(obj, index):
        if index == None:
            return obj
        try:
            obj = obj[index]
        except TypeError:
            if index != 0:
                raise
            # if index is 0 and item is not subscriptable, just
            # use item itself (so cpu[0] works on uniprocessors)
        return obj
    getindex = staticmethod(getindex)

class ProxyFactory(object):
    def __getattr__(self, attr):
        return Proxy(attr)

# global object for handling parent.foo proxies
parent = ProxyFactory()

def isSubClass(value, cls):
    try:
        return issubclass(value, cls)
    except:
        return False

def isConfigNode(value):
    try:
        return issubclass(value, ConfigNode)
    except:
        return False

def isSimObject(value):
    try:
        return issubclass(value, SimObject)
    except:
        return False

def isSimObjSequence(value):
    if not isinstance(value, (list, tuple)):
        return False

    for val in value:
        if not isNullPointer(val) and not isConfigNode(val):
            return False

    return True

def isParamContext(value):
    try:
        return issubclass(value, ParamContext)
    except:
        return False

class_decorator = 'M5M5_SIMOBJECT_'
expr_decorator = 'M5M5_EXPRESSION_'
dot_decorator = '_M5M5_DOT_'

# 'Global' map of legitimate types for SimObject parameters.
param_types = {}

# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamType(object):
    pass

# Add types defined in given context (dict or module) that are derived
# from ParamType to param_types map.
def add_param_types(ctx):
    if isinstance(ctx, types.DictType):
        source_dict = ctx
    elif isinstance(ctx, types.ModuleType):
        source_dict = ctx.__dict__
    else:
        raise TypeError, \
              "m5.config.add_param_types requires dict or module as arg"
    for key,val in source_dict.iteritems():
        if isinstance(val, type) and issubclass(val, ParamType):
            param_types[key] = val

# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject).  This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaConfigNode(type):
    # Attributes that can be set only at initialization time
    init_keywords = {}
    # Attributes that can be set any time
    keywords = { 'check' : types.FunctionType,
                 'children' : types.ListType }

    # __new__ is called before __init__, and is where the statements
    # in the body of the class definition get loaded into the class's
    # __dict__.  We intercept this to filter out parameter assignments
    # and only allow "private" attributes to be passed to the base
    # __new__ (starting with underscore).
    def __new__(mcls, name, bases, dict):
        # Copy "private" attributes (including special methods such as __new__)
        # to the official dict.  Everything else goes in _init_dict to be
        # filtered in __init__.
        cls_dict = {}
        for key,val in dict.items():
            if key.startswith('_'):
                cls_dict[key] = val
                del dict[key]
        cls_dict['_init_dict'] = dict
        return super(MetaConfigNode, mcls).__new__(mcls, name, bases, cls_dict)

    # initialization
    def __init__(cls, name, bases, dict):
        super(MetaConfigNode, cls).__init__(name, bases, dict)

        # initialize required attributes
        cls._params = multidict()
        cls._values = multidict()
        cls._param_types = {}
        cls._bases = [c for c in cls.__mro__ if isConfigNode(c)]
        cls._anon_subclass_counter = 0

        # We don't support multiple inheritence.  If you want to, you
        # must fix multidict to deal with it properly.
        cnbase = [ base for base in bases if isConfigNode(base) ]
        if len(cnbase) == 1:
            # If your parent has a value in it that's a config node, clone
            # it.  Do this now so if we update any of the values'
            # attributes we are updating the clone and not the original.
            for key,val in cnbase[0]._values.iteritems():

                # don't clone if (1) we're about to overwrite it with
                # a local setting or (2) we've already cloned a copy
                # from an earlier (more derived) base
                if cls._init_dict.has_key(key) or cls._values.has_key(key):
                    continue

                if isConfigNode(val):
                    cls._values[key] = val()
                elif isSimObjSequence(val) and len(val):
                    cls._values[key] = [ v() for v in val ]

            cls._params.parent = cnbase[0]._params
            cls._values.parent = cnbase[0]._values

        elif len(cnbase) > 1:
            panic("""\
The config hierarchy only supports single inheritence of SimObject
classes. You're trying to derive from:
%s""" % str(cnbase))

        # process param types from _init_dict, as these may be needed
        # by param descriptions also in _init_dict
        for key,val in cls._init_dict.items():
            if isinstance(val, type) and issubclass(val, ParamType):
                cls._param_types[key] = val
                if not issubclass(val, ConfigNode):
                    del cls._init_dict[key]

        # now process remaining _init_dict items
        for key,val in cls._init_dict.items():
            # param descriptions
            if isinstance(val, ParamBase):
                cls._new_param(key, val)

            # init-time-only keywords
            elif cls.init_keywords.has_key(key):
                cls._set_keyword(key, val, cls.init_keywords[key])

            # See description of decorators in the importer.py file.
            # We just strip off the expr_decorator now since we don't
            # need from this point on.
            elif key.startswith(expr_decorator):
                key = key[len(expr_decorator):]
                # because it had dots into a list so that we can find the
                # proper variable to modify.
                key = key.split(dot_decorator)
                c = cls
                for item in key[:-1]:
                    c = getattr(c, item)
                setattr(c, key[-1], val)

            # default: use normal path (ends up in __setattr__)
            else:
                setattr(cls, key, val)

    def _set_keyword(cls, keyword, val, kwtype):
        if not isinstance(val, kwtype):
            raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
                  (keyword, type(val), kwtype)
        if isinstance(val, types.FunctionType):
            val = classmethod(val)
        type.__setattr__(cls, keyword, val)

    def _new_param(cls, name, value):
        cls._params[name] = value
        if hasattr(value, 'default'):
            cls._values[name] = value.default
        # try to resolve local param types in local param_types scope
        value.maybe_resolve_type(cls._param_types)

    # Set attribute (called on foo.attr = value when foo is an
    # instance of class cls).
    def __setattr__(cls, attr, value):
        # normal processing for private attributes
        if attr.startswith('_'):
            type.__setattr__(cls, attr, value)
            return

        if cls.keywords.has_key(attr):
            cls._set_keyword(attr, value, cls.keywords[attr])
            return

        # must be SimObject param
        param = cls._params.get(attr, None)
        if param:
            # It's ok: set attribute by delegating to 'object' class.
            # Note the use of param.make_value() to verify/canonicalize
            # the assigned value
            try:
                param.valid(value)
            except Exception, e:
                msg = "%s\nError setting param %s.%s to %s\n" % \
                      (e, cls.__name__, attr, value)
                e.args = (msg, )
                raise
            cls._values[attr] = value
        elif isConfigNode(value) or isSimObjSequence(value):
            cls._values[attr] = value
        else:
            raise AttributeError, \
                  "Class %s has no parameter %s" % (cls.__name__, attr)

    def __getattr__(cls, attr):
        if cls._params.has_key(attr) or cls._values.has_key(attr):
            return Value(cls, attr)

        if attr == '_cpp_param_decl' and hasattr(cls, 'type'):
            return cls.type + '*'

        raise AttributeError, \
              "object '%s' has no attribute '%s'" % (cls.__name__, attr)

    def add_child(cls, instance, name, child):
        if isNullPointer(child) or instance.top_child_names.has_key(name):
            return

        if isinstance(child, (list, tuple)):
            kid = []
            for i,c in enumerate(child):
                n = '%s%d' % (name, i)
                k = c.instantiate(n, instance)

                instance.children.append(k)
                instance.child_names[n] = k
                instance.child_objects[c] = k
                kid.append(k)
        else:
            kid = child.instantiate(name, instance)
            instance.children.append(kid)
            instance.child_names[name] = kid
            instance.child_objects[child] = kid

        instance.top_child_names[name] = kid

    # Print instance info to .ini file.
    def instantiate(cls, name, parent = None):
        instance = Node(name, cls, parent, isParamContext(cls))

        if hasattr(cls, 'check'):
            cls.check()

        for key,value in cls._values.iteritems():
            if isConfigNode(value):
                cls.add_child(instance, key, value)
            if isinstance(value, (list, tuple)):
                vals = [ v for v in value if isConfigNode(v) ]
                if len(vals):
                    cls.add_child(instance, key, vals)

        for pname,param in cls._params.iteritems():
            value = cls._values.get(pname, None)
            if value is None:
                panic('Error getting %s from %s' % (pname, name))

            try:
                if isConfigNode(value):
                    value = instance.child_objects[value]
                elif isinstance(value, (list, tuple)):
                    v = []
                    for val in value:
                        if isConfigNode(val):
                            v.append(instance.child_objects[val])
                        else:
                            v.append(val)
                    value = v

                p = NodeParam(pname, param, value)
                instance.params.append(p)
                instance.param_names[pname] = p
            except Exception, e:
                msg = 'Exception while evaluating %s.%s\n%s' % \
                      (instance.path, pname, e)
                e.args = (msg, )
                raise

        return instance

    def _convert(cls, value):
        realvalue = value
        if isinstance(value, Node):
            realvalue = value.realtype

        if isinstance(realvalue, Proxy):
            return value

        if realvalue == None or isNullPointer(realvalue):
            return value

        if isSubClass(realvalue, cls):
            return value

        raise TypeError, 'object %s type %s wrong type, should be %s' % \
              (repr(realvalue), realvalue, cls)

    def _string(cls, value):
        if isNullPointer(value):
            return 'Null'
        return Node._string(value)

# The ConfigNode class is the root of the special hierarchy.  Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class ConfigNode(object):
    # Specify metaclass.  Any class inheriting from ConfigNode will
    # get this metaclass.
    __metaclass__ = MetaConfigNode

    def __new__(cls, **kwargs):
        name = cls.__name__ + ("_%d" % cls._anon_subclass_counter)
        cls._anon_subclass_counter += 1
        return cls.__metaclass__(name, (cls, ), kwargs)

class ParamContext(ConfigNode,ParamType):
    pass

class MetaSimObject(MetaConfigNode):
    # init_keywords and keywords are inherited from MetaConfigNode,
    # with overrides/additions
    init_keywords = MetaConfigNode.init_keywords
    init_keywords.update({ 'abstract' : types.BooleanType,
                           'type' : types.StringType })

    keywords = MetaConfigNode.keywords
    # no additional keywords

    cpp_classes = []

    # initialization
    def __init__(cls, name, bases, dict):
        super(MetaSimObject, cls).__init__(name, bases, dict)

        if hasattr(cls, 'type'):
            if name == 'SimObject':
                cls._cpp_base = None
            elif hasattr(cls._bases[1], 'type'):
                cls._cpp_base = cls._bases[1].type
            else:
                panic("SimObject %s derives from a non-C++ SimObject %s "\
                      "(no 'type')" % (cls, cls_bases[1].__name__))

            # This class corresponds to a C++ class: put it on the global
            # list of C++ objects to generate param structs, etc.
            MetaSimObject.cpp_classes.append(cls)

    def _cpp_decl(cls):
        name = cls.__name__
        code = ""
        code += "\n".join([e.cpp_declare() for e in cls._param_types.values()])
        code += "\n"
        param_names = cls._params.keys()
        param_names.sort()
        code += "struct Params"
        if cls._cpp_base:
            code += " : public %s::Params" % cls._cpp_base
        code += " {\n    "
        code += "\n    ".join([cls._params[pname].cpp_decl(pname) \
                               for pname in param_names])
        code += "\n};\n"
        return code

class NodeParam(object):
    def __init__(self, name, param, value):
        self.name = name
        self.param = param
        self.ptype = param.ptype
        self.convert = param.convert
        self.string = param.string
        self.value = value

class Node(object):
    all = {}
    def __init__(self, name, realtype, parent, paramcontext):
        self.name = name
        self.realtype = realtype
        if isSimObject(realtype):
            self.type = realtype.type
        else:
            self.type = None
        self.parent = parent
        self.children = []
        self.child_names = {}
        self.child_objects = {}
        self.top_child_names = {}
        self.params = []
        self.param_names = {}
        self.paramcontext = paramcontext

        path = [ self.name ]
        node = self.parent
        while node is not None:
            if node.name != 'root':
                path.insert(0, node.name)
            else:
                assert(node.parent is None)
            node = node.parent
        self.path = '.'.join(path)

    def find(self, realtype, path):
        if not path:
            if issubclass(self.realtype, realtype):
                return self, True

            obj = None
            for child in self.children:
                if issubclass(child.realtype, realtype):
                    if obj is not None:
                        raise AttributeError, \
                              'parent.any matched more than one: %s %s' % \
                              (obj.path, child.path)
                    obj = child
            for param in self.params:
                if isConfigNode(param.ptype):
                    continue
                if issubclass(param.ptype, realtype):
                    if obj is not None:
                        raise AttributeError, \
                              'parent.any matched more than one: %s' % obj.path
                    obj = param.value
            return obj, obj is not None

        try:
            obj = self
            for (node,index) in path[:-1]:
                if obj.child_names.has_key(node):
                    obj = obj.child_names[node]
                else:
                    obj = obj.top_child_names[node]
                obj = Proxy.getindex(obj, index)

            (last,index) = path[-1]
            if obj.child_names.has_key(last):
                value = obj.child_names[last]
                return Proxy.getindex(value, index), True
            elif obj.top_child_names.has_key(last):
                value = obj.top_child_names[last]
                return Proxy.getindex(value, index), True
            elif obj.param_names.has_key(last):
                value = obj.param_names[last]
                #realtype._convert(value.value)
                return Proxy.getindex(value.value, index), True
        except KeyError:
            pass

        return None, False

    def unproxy(self, param, ptype):
        if not isinstance(param, Proxy):
            return param
        return param.unproxy(self, ptype)

    def fixup(self):
        self.all[self.path] = self

        for param in self.params:
            ptype = param.ptype
            pval = param.value

            try:
                if isinstance(pval, (list, tuple)):
                    param.value = [ self.unproxy(pv, ptype) for pv in pval ]
                else:
                    param.value = self.unproxy(pval, ptype)
            except Exception, e:
                msg = 'Error while fixing up %s:%s\n%s' % \
                      (self.path, param.name, e)
                e.args = (msg, )
                raise

        for child in self.children:
            assert(child != self)
            child.fixup()

    # print type and parameter values to .ini file
    def display(self):
        print '[' + self.path + ']'	# .ini section header

        if isSimObject(self.realtype):
            print 'type = %s' % self.type

        if self.children:
            # instantiate children in same order they were added for
            # backward compatibility (else we can end up with cpu1
            # before cpu0).  Changing ordering can also influence timing
            # in the current memory system, as caches get added to a bus
            # in different orders which affects their priority in the
            # case of simulataneous requests.
            self.children.sort(lambda x,y: cmp(x.name, y.name))
            children = [ c.name for c in self.children if not c.paramcontext]
            print 'children =', ' '.join(children)

        self.params.sort(lambda x,y: cmp(x.name, y.name))
        for param in self.params:
            try:
                if param.value is None:
                    raise AttributeError, 'Parameter with no value'

                value = param.convert(param.value)
                if hasattr(value, 'relative') and value.relative and value:
                    if param.name == 'cycle_time':
                        start = self.parent
                    else:
                        start = self
                    val = start.unproxy(parent.cycle_time,
                                        (Frequency, Latency, ClockPeriod))
                    value.clock = Frequency._convert(val)
                string = param.string(value)
            except Exception, e:
                msg = 'exception in %s:%s=%s\n%s' % (self.path, param.name,
                                                     value, e)
                e.args = (msg, )
                raise

            print '%s = %s' % (param.name, string)

        print

        # recursively dump out children
        for c in self.children:
            c.display()

    # print type and parameter values to .ini file
    def outputDot(self, dot):
        label = "{%s|" % self.path
        if isSimObject(self.realtype):
            label +=  '%s|' % self.type

        if self.children:
            # instantiate children in same order they were added for
            # backward compatibility (else we can end up with cpu1
            # before cpu0).
            for c in self.children:
                dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))

        simobjs = []
        for param in self.params:
            try:
                if param.value is None:
                    raise AttributeError, 'Parameter with no value'

                value = param.convert(param.value)
                if param.ptype in (Frequency, Latency, ClockPeriod):
                    val = self.parent.unproxy(parent.frequency, Frequency)
                    param.clock = Frequency._convert(val)
                string = param.string(value)
            except Exception, e:
                msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
                e.args = (msg, )
                raise

            if isConfigNode(param.ptype) and string != "Null":
                simobjs.append(string)
            else:
                label += '%s = %s\\n' % (param.name, string)

        for so in simobjs:
            label += "|<%s> %s" % (so, so)
            dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
                                    tailport="w"))
        label += '}'
        dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))

        # recursively dump out children
        for c in self.children:
            c.outputDot(dot)

    def _string(cls, value):
        if not isinstance(value, Node):
            raise AttributeError, 'expecting %s got %s' % (Node, value)
        return value.path
    _string = classmethod(_string)

#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object.  These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files).  The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################

def isNullPointer(value):
    return isinstance(value, NullSimObject)

class Value(object):
    def __init__(self, obj, attr):
        super(Value, self).__setattr__('attr', attr)
        super(Value, self).__setattr__('obj', obj)

    def _getattr(self):
        return self.obj._values.get(self.attr)

    def __setattr__(self, attr, value):
        setattr(self._getattr(), attr, value)

    def __getattr__(self, attr):
        return getattr(self._getattr(), attr)

    def __getitem__(self, index):
        return self._getattr().__getitem__(index)

    def __call__(self, *args, **kwargs):
        return self._getattr().__call__(*args, **kwargs)

    def __nonzero__(self):
        return bool(self._getattr())

    def __str__(self):
        return str(self._getattr())

    def __len__(self):
        return len(self._getattr())

# Regular parameter.
class ParamBase(object):
    def __init__(self, ptype, *args, **kwargs):
        if isinstance(ptype, types.StringType):
            self.ptype_string = ptype
        elif isinstance(ptype, type):
            self.ptype = ptype
        else:
            raise TypeError, "Param type is not a type (%s)" % ptype

        if args:
            if len(args) == 1:
                self.desc = args[0]
            elif len(args) == 2:
                self.default = args[0]
                self.desc = args[1]
            else:
                raise TypeError, 'too many arguments'

        if kwargs.has_key('desc'):
            assert(not hasattr(self, 'desc'))
            self.desc = kwargs['desc']
            del kwargs['desc']

        if kwargs.has_key('default'):
            assert(not hasattr(self, 'default'))
            self.default = kwargs['default']
            del kwargs['default']

        if kwargs:
            raise TypeError, 'extra unknown kwargs %s' % kwargs

        if not hasattr(self, 'desc'):
            raise TypeError, 'desc attribute missing'

    def maybe_resolve_type(self, context):
        # check if already resolved... don't use hasattr(),
        # as that calls __getattr__()
        if self.__dict__.has_key('ptype'):
            return
        try:
            self.ptype = context[self.ptype_string]
        except KeyError:
            # no harm in trying... we'll try again later using global scope
            pass

    def __getattr__(self, attr):
        if attr == 'ptype':
            try:
                self.ptype = param_types[self.ptype_string]
                return self.ptype
            except:
                panic("undefined Param type %s" % self.ptype_string)
        else:
            raise AttributeError, "'%s' object has no attribute '%s'" % \
                  (type(self).__name__, attr)

    def valid(self, value):
        if not isinstance(value, Proxy):
            self.ptype._convert(value)

    def convert(self, value):
        return self.ptype._convert(value)

    def string(self, value):
        return self.ptype._string(value)

    def set(self, name, instance, value):
        instance.__dict__[name] = value

    def cpp_decl(self, name):
        return '%s %s;' % (self.ptype._cpp_param_decl, name)

class ParamFactory(object):
    def __init__(self, type):
        self.ptype = type

    # E.g., Param.Int(5, "number of widgets")
    def __call__(self, *args, **kwargs):
        return ParamBase(self.ptype, *args, **kwargs)

    # Strange magic to theoretically allow dotted names as Param classes,
    # e.g., Param.Foo.Bar(...) to have a param of type Foo.Bar
    def __getattr__(self, attr):
        if attr == '__bases__':
            raise AttributeError, ''
        cls = type(self)
        return cls(attr)

    def __setattr__(self, attr, value):
        if attr != 'ptype':
            raise AttributeError, \
                  'Attribute %s not available in %s' % (attr, self.__class__)
        super(ParamFactory, self).__setattr__(attr, value)

Param = ParamFactory(None)

# Vector-valued parameter description.  Just like Param, except that
# the value is a vector (list) of the specified type instead of a
# single value.
class VectorParamBase(ParamBase):
    def __init__(self, type, *args, **kwargs):
        ParamBase.__init__(self, type, *args, **kwargs)

    def valid(self, value):
        if value == None:
            return True

        if isinstance(value, (list, tuple)):
            for val in value:
                if not isinstance(val, Proxy):
                    self.ptype._convert(val)
        elif not isinstance(value, Proxy):
            self.ptype._convert(value)

    # Convert assigned value to appropriate type.  If the RHS is not a
    # list or tuple, it generates a single-element list.
    def convert(self, value):
        if value == None:
            return []

        if isinstance(value, (list, tuple)):
            # list: coerce each element into new list
            return [ self.ptype._convert(v) for v in value ]
        else:
            # singleton: coerce & wrap in a list
            return self.ptype._convert(value)

    def string(self, value):
        if isinstance(value, (list, tuple)):
            return ' '.join([ self.ptype._string(v) for v in value])
        else:
            return self.ptype._string(value)

    def cpp_decl(self, name):
        return 'std::vector<%s> %s;' % (self.ptype._cpp_param_decl, name)

class VectorParamFactory(ParamFactory):
    # E.g., VectorParam.Int(5, "number of widgets")
    def __call__(self, *args, **kwargs):
        return VectorParamBase(self.ptype, *args, **kwargs)

VectorParam = VectorParamFactory(None)

#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types.  This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method).  Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################

class MetaRange(type):
    def __init__(cls, name, bases, dict):
        super(MetaRange, cls).__init__(name, bases, dict)
        if name == 'Range':
            return
        cls._cpp_param_decl = 'Range<%s>' % cls.type._cpp_param_decl

    def _convert(cls, value):
        if not isinstance(value, Range):
            raise TypeError, 'value %s is not a Pair' % value
        value = cls(value)
        value.first = cls.type._convert(value.first)
        value.second = cls.type._convert(value.second)
        return value

    def _string(cls, value):
        first = int(value.first)
        second = int(value.second)
        if value.extend:
            second += first
        if not value.inclusive:
            second -= 1
        return '%s:%s' % (cls.type._string(first), cls.type._string(second))

class Range(ParamType):
    __metaclass__ = MetaRange
    def __init__(self, *args, **kwargs):
        if len(args) == 0:
            self.first = kwargs.pop('start')

            if 'end' in kwargs:
                self.second = kwargs.pop('end')
                self.inclusive = True
                self.extend = False
            elif 'size' in kwargs:
                self.second = kwargs.pop('size')
                self.inclusive = False
                self.extend = True
            else:
                raise TypeError, "Either end or size must be specified"

        elif len(args) == 1:
            if kwargs:
                self.first = args[0]
                if 'end' in kwargs:
                    self.second = kwargs.pop('end')
                    self.inclusive = True
                    self.extend = False
                elif 'size' in kwargs:
                    self.second = kwargs.pop('size')
                    self.inclusive = False
                    self.extend = True
                else:
                    raise TypeError, "Either end or size must be specified"
            elif isinstance(args[0], Range):
                self.first = args[0].first
                self.second = args[0].second
                self.inclusive = args[0].inclusive
                self.extend = args[0].extend
            else:
                self.first = 0
                self.second = args[0]
                self.inclusive = False
                self.extend = True

        elif len(args) == 2:
            self.first, self.second = args
            self.inclusive = True
            self.extend = False
        else:
            raise TypeError, "Too many arguments specified"

        if kwargs:
            raise TypeError, "too many keywords: %s" % kwargs.keys()

# Metaclass for bounds-checked integer parameters.  See CheckedInt.
class CheckedIntType(type):
    def __init__(cls, name, bases, dict):
        super(CheckedIntType, cls).__init__(name, bases, dict)

        # CheckedInt is an abstract base class, so we actually don't
        # want to do any processing on it... the rest of this code is
        # just for classes that derive from CheckedInt.
        if name == 'CheckedInt':
            return

        if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
            if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
                panic("CheckedInt subclass %s must define either\n" \
                      "    'min' and 'max' or 'size' and 'unsigned'\n" \
                      % name);
            if cls.unsigned:
                cls.min = 0
                cls.max = 2 ** cls.size - 1
            else:
                cls.min = -(2 ** (cls.size - 1))
                cls.max = (2 ** (cls.size - 1)) - 1

        cls._cpp_param_decl = cls.cppname

    def _convert(cls, value):
        if isinstance(value, bool):
            return int(value)

        if not isinstance(value, (int, long, float, str)):
            raise TypeError, 'Integer param of invalid type %s' % type(value)

        if isinstance(value, float):
            value = long(value)
        elif isinstance(value, str):
            value = toInteger(value)

        if not cls.min <= value <= cls.max:
            raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
                  (cls.min, value, cls.max)

        return value

    def _string(cls, value):
        return str(value)

# Abstract superclass for bounds-checked integer parameters.  This
# class is subclassed to generate parameter classes with specific
# bounds.  Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(long,ParamType):
    __metaclass__ = CheckedIntType

class Int(CheckedInt):      cppname = 'int';      size = 32; unsigned = False
class Unsigned(CheckedInt): cppname = 'unsigned'; size = 32; unsigned = True

class Int8(CheckedInt):     cppname =  'int8_t';  size =  8; unsigned = False
class UInt8(CheckedInt):    cppname = 'uint8_t';  size =  8; unsigned = True
class Int16(CheckedInt):    cppname =  'int16_t'; size = 16; unsigned = False
class UInt16(CheckedInt):   cppname = 'uint16_t'; size = 16; unsigned = True
class Int32(CheckedInt):    cppname =  'int32_t'; size = 32; unsigned = False
class UInt32(CheckedInt):   cppname = 'uint32_t'; size = 32; unsigned = True
class Int64(CheckedInt):    cppname =  'int64_t'; size = 64; unsigned = False
class UInt64(CheckedInt):   cppname = 'uint64_t'; size = 64; unsigned = True

class Counter(CheckedInt):  cppname = 'Counter';  size = 64; unsigned = True
class Tick(CheckedInt):     cppname = 'Tick';     size = 64; unsigned = True
class TcpPort(CheckedInt):  cppname = 'uint16_t'; size = 16; unsigned = True
class UdpPort(CheckedInt):  cppname = 'uint16_t'; size = 16; unsigned = True

class Percent(CheckedInt):  cppname = 'int'; min = 0; max = 100

class MemorySize(CheckedInt):
    cppname = 'uint64_t'
    size = 64
    unsigned = True
    def __new__(cls, value):
        return super(MemorySize, cls).__new__(cls, toMemorySize(value))

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        return '%d' % value
    _string = classmethod(_string)

class Addr(CheckedInt):
    cppname = 'Addr'
    size = 64
    unsigned = True
    def __new__(cls, value):
        try:
            value = long(toMemorySize(value))
        except TypeError:
            value = long(value)
        return super(Addr, cls).__new__(cls, value)

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        return '%d' % value
    _string = classmethod(_string)

class AddrRange(Range):
    type = Addr

# Boolean parameter type.
class Bool(ParamType):
    _cpp_param_decl = 'bool'
    def __init__(self, value):
        try:
            self.value = toBool(value)
        except TypeError:
            self.value = bool(value)

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        if value.value:
            return "true"
        else:
            return "false"
    _string = classmethod(_string)

# String-valued parameter.
class String(ParamType):
    _cpp_param_decl = 'string'

    # Constructor.  Value must be Python string.
    def _convert(cls,value):
        if value is None:
            return ''
        if isinstance(value, str):
            return value

        raise TypeError, \
              "String param got value %s %s" % (repr(value), type(value))
    _convert = classmethod(_convert)

    # Generate printable string version.  Not too tricky.
    def _string(cls, value):
        return value
    _string = classmethod(_string)

def IncEthernetAddr(addr, val = 1):
    bytes = map(lambda x: int(x, 16), addr.split(':'))
    bytes[5] += val
    for i in (5, 4, 3, 2, 1):
        val,rem = divmod(bytes[i], 256)
        bytes[i] = rem
        if val == 0:
            break
        bytes[i - 1] += val
    assert(bytes[0] <= 255)
    return ':'.join(map(lambda x: '%02x' % x, bytes))

class NextEthernetAddr(object):
    __metaclass__ = Singleton
    addr = "00:90:00:00:00:01"

    def __init__(self, inc = 1):
        self.value = self.addr
        self.addr = IncEthernetAddr(self.addr, inc)

class EthernetAddr(ParamType):
    _cpp_param_decl = 'EthAddr'

    def _convert(cls, value):
        if value == NextEthernetAddr:
            return value

        if not isinstance(value, str):
            raise TypeError, "expected an ethernet address and didn't get one"

        bytes = value.split(':')
        if len(bytes) != 6:
            raise TypeError, 'invalid ethernet address %s' % value

        for byte in bytes:
            if not 0 <= int(byte) <= 256:
                raise TypeError, 'invalid ethernet address %s' % value

        return value
    _convert = classmethod(_convert)

    def _string(cls, value):
        if value == NextEthernetAddr:
            value = value().value
        return value
    _string = classmethod(_string)

# Special class for NULL pointers.  Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
    __metaclass__ = Singleton

    def __call__(cls):
        return cls

    def _instantiate(self, parent = None, path = ''):
        pass

    def _convert(cls, value):
        if value == None:
            return

        if isinstance(value, cls):
            return value

        raise TypeError, 'object %s %s of the wrong type, should be %s' % \
              (repr(value), type(value), cls)
    _convert = classmethod(_convert)

    def _string():
        return 'NULL'
    _string = staticmethod(_string)

# The only instance you'll ever need...
Null = NULL = NullSimObject()

# Enumerated types are a little more complex.  The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so).  (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value.  For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)

# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type.  We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.


# Metaclass for Enum types
class MetaEnum(type):
    def __init__(cls, name, bases, init_dict):
        if init_dict.has_key('map'):
            if not isinstance(cls.map, dict):
                raise TypeError, "Enum-derived class attribute 'map' " \
                      "must be of type dict"
            # build list of value strings from map
            cls.vals = cls.map.keys()
            cls.vals.sort()
        elif init_dict.has_key('vals'):
            if not isinstance(cls.vals, list):
                raise TypeError, "Enum-derived class attribute 'vals' " \
                      "must be of type list"
            # build string->value map from vals sequence
            cls.map = {}
            for idx,val in enumerate(cls.vals):
                cls.map[val] = idx
        else:
            raise TypeError, "Enum-derived class must define "\
                  "attribute 'map' or 'vals'"

        cls._cpp_param_decl = name

        super(MetaEnum, cls).__init__(name, bases, init_dict)

    def cpp_declare(cls):
        s = 'enum %s {\n    ' % cls.__name__
        s += ',\n    '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals])
        s += '\n};\n'
        return s

# Base class for enum types.
class Enum(ParamType):
    __metaclass__ = MetaEnum
    vals = []

    def _convert(self, value):
        if value not in self.map:
            raise TypeError, "Enum param got bad value '%s' (not in %s)" \
                  % (value, self.vals)
        return value
    _convert = classmethod(_convert)

    # Generate printable string version of value.
    def _string(self, value):
        return str(value)
    _string = classmethod(_string)

root_frequency = None

#
# "Constants"... handy aliases for various values.
#
class RootFrequency(float,ParamType):
    _cpp_param_decl = 'Tick'

    def __new__(cls, value):
        return super(cls, RootFrequency).__new__(cls, toFrequency(value))

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        return '%d' % int(round(value))
    _string = classmethod(_string)

class ClockPeriod(float,ParamType):
    _cpp_param_decl = 'Tick'
    def __new__(cls, value):
        absolute = False
        relative = False
        try:
            val = toClockPeriod(value)
        except ValueError, e:
            if value.endswith('f'):
                val = float(value[:-1])
                if val:
                    val = 1 / val
                relative = True
            elif value.endswith('c'):
                val = float(value[:-1])
                relative = True
            elif value.endswith('t'):
                val = float(value[:-1])
                absolute = True
            else:
                raise e

        self = super(cls, ClockPeriod).__new__(cls, val)
        self.absolute = absolute
        self.relative = relative
        return self

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        if value and not value.absolute:
            if value.relative:
                base = root_frequency / value.clock
            else:
                base = root_frequency
            value *= base

        return '%d' % int(round(value))
    _string = classmethod(_string)

class Frequency(float,ParamType):
    _cpp_param_decl = 'Tick'

    def __new__(cls, value):
        relative = False
        try:
            val = toFrequency(value)
        except ValueError, e:
            if value.endswith('f'):
                val = float(value[:-1])
                relative = True
            else:
                raise e
        self = super(cls, Frequency).__new__(cls, val)
        self.relative = relative
        return self

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        if value:
            if value.relative:
                base = root_frequency / value.clock
            else:
                base = root_frequency

            value = base / value

        return '%d' % int(round(value))
    _string = classmethod(_string)

class Latency(float,ParamType):
    _cpp_param_decl = 'Tick'
    def __new__(cls, value):
        absolute = False
        relative = False
        try:
            val = toLatency(value)
        except ValueError, e:
            if value.endswith('c'):
                val = float(value[:-1])
                relative = True
            elif value.endswith('t'):
                val = float(value[:-1])
                absolute = True
            else:
                raise e
        self = super(cls, Latency).__new__(cls, val)
        self.absolute = absolute
        self.relative = relative
        return self

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        if value and not value.absolute:
            if value.relative:
                base = root_frequency / value.clock
            else:
                base = root_frequency
            value *= base
        return '%d' % int(round(value))
    _string = classmethod(_string)

class NetworkBandwidth(float,ParamType):
    _cpp_param_decl = 'float'
    def __new__(cls, value):
        val = toNetworkBandwidth(value) / 8.0
        return super(cls, NetworkBandwidth).__new__(cls, val)

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        value = root_frequency / value
        return '%f' % value
    _string = classmethod(_string)

class MemoryBandwidth(float,ParamType):
    _cpp_param_decl = 'float'
    def __new__(self, value):
        val = toMemoryBandwidth(value)
        return super(cls, MemoryBandwidth).__new__(cls, val)

    def _convert(cls, value):
        return cls(value)
    _convert = classmethod(_convert)

    def _string(cls, value):
        value = root_frequency / value
        return '%f' % value
    _string = classmethod(_string)

# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)

#####################################################################

# The final hook to generate .ini files.  Called from configuration
# script once config is built.
def instantiate(root):
    global root_frequency
    instance = root.instantiate('root')
    root_frequency = RootFrequency._convert(root.frequency._getattr())
    instance.fixup()
    instance.display()
    if not noDot:
       dot = pydot.Dot()
       instance.outputDot(dot)
       dot.orientation = "portrait"
       dot.size = "8.5,11"
       dot.ranksep="equally"
       dot.rank="samerank"
       dot.write("config.dot")
       dot.write_ps("config.ps")

# SimObject is a minimal extension of ConfigNode, implementing a
# hierarchy node that corresponds to an M5 SimObject.  It prints out a
# "type=" line to indicate its SimObject class, prints out the
# assigned parameters corresponding to its class, and allows
# parameters to be set by keyword in the constructor.  Note that most
# of the heavy lifting for the SimObject param handling is done in the
# MetaConfigNode metaclass.
class SimObject(ConfigNode, ParamType):
    __metaclass__ = MetaSimObject
    type = 'SimObject'


# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked.  Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = ['ConfigNode', 'SimObject', 'ParamContext', 'Param', 'VectorParam',
           'parent', 'Enum',
           'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
           'Int32', 'UInt32', 'Int64', 'UInt64',
           'Counter', 'Addr', 'Tick', 'Percent',
           'MemorySize', 'RootFrequency', 'Frequency', 'Latency',
           'ClockPeriod', 'NetworkBandwidth', 'MemoryBandwidth',
           'Range', 'AddrRange', 'MaxAddr', 'MaxTick', 'AllMemory', 'NULL',
           'NextEthernetAddr', 'instantiate']