1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
|
# Copyright (c) 2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import generators
import os, re, sys, types
noDot = False
try:
import pydot
except:
noDot = True
env = {}
env.update(os.environ)
def panic(string):
print >>sys.stderr, 'panic:', string
sys.exit(1)
def issequence(value):
return isinstance(value, tuple) or isinstance(value, list)
class Singleton(type):
def __call__(cls, *args, **kwargs):
if hasattr(cls, '_instance'):
return cls._instance
cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
return cls._instance
#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the deisred simulation
# configuration. For now, the Python emits a .ini file that can be
# parsed by M5. In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name. The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class). To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object. The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements. For example:
#
# cache = BaseCache('my_cache', root, size=64*K)
# cache.hit_latency = 3
# cache.assoc = 8
#
# (The first two constructor arguments specify the name of the created
# cache and its parent node in the hierarchy.)
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications. This
# allows parameter validity checking in the Python code. Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively. This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# The Python module provides another class, ConfigNode, which is a
# superclass of SimObject. ConfigNode implements the parent/child
# relationship for building the configuration hierarchy tree.
# Concrete instances of ConfigNode can be used to group objects in the
# hierarchy, but do not correspond to SimObjects themselves (like a
# .ini section with "children=" but no "type=".
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file. See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################
#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior. In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables. These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters. These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary. Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children. The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator). Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.
# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited. Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute. Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments. Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation. To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################
class Proxy(object):
def __init__(self, path = ()):
self._object = None
self._path = path
def __getattr__(self, attr):
return Proxy(self._path + (attr, ))
def __setattr__(self, attr, value):
if not attr.startswith('_'):
raise AttributeError, 'cannot set attribute %s' % attr
super(Proxy, self).__setattr__(attr, value)
def _convert(self):
obj = self._object
for attr in self._path:
obj = obj.__getattribute__(attr)
return obj
Super = Proxy()
def isSubClass(value, cls):
try:
return issubclass(value, cls)
except:
return False
def isParam(self):
return isinstance(self, _Param)
def isConfigNode(value):
try:
return issubclass(value, ConfigNode)
except:
return False
def isSimObject(value):
try:
return issubclass(value, SimObject)
except:
return False
def isSimObjSequence(value):
if not issequence(value):
return False
for val in value:
if not isNullPointer(val) and not isConfigNode(val):
return False
return True
def isParamContext(value):
try:
return issubclass(value, ParamContext)
except:
return False
class_decorator = '_M5M5_SIMOBJECT_'
expr_decorator = '_M5M5_EXPRESSION_'
dot_decorator = '_M5M5_DOT_'
# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject). This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaConfigNode(type):
keywords = { 'abstract' : types.BooleanType,
'check' : types.FunctionType,
'type' : (types.NoneType, types.StringType) }
# __new__ is called before __init__, and is where the statements
# in the body of the class definition get loaded into the class's
# __dict__. We intercept this to filter out parameter assignments
# and only allow "private" attributes to be passed to the base
# __new__ (starting with underscore).
def __new__(mcls, name, bases, dict):
priv = { 'abstract' : False,
# initialize _params and _values dicts to empty
'_params' : {},
'_values' : {},
'_disable' : {} }
for key,val in dict.items():
del dict[key]
# See description of decorators in the importer.py file
# We just strip off the expr_decorator now since we don't
# need from this point on.
if key.startswith(expr_decorator):
key = key[len(expr_decorator):]
if mcls.keywords.has_key(key):
if not isinstance(val, mcls.keywords[key]):
raise TypeError, \
'keyword %s has the wrong type %s should be %s' % \
(key, type(val), mcls.keywords[key])
if isinstance(val, types.FunctionType):
val = classmethod(val)
priv[key] = val
elif key.startswith('_'):
priv[key] = val
elif not isNullPointer(val) and isConfigNode(val):
dict[key] = val()
elif isSimObjSequence(val):
dict[key] = [ v() for v in val ]
else:
dict[key] = val
# If your parent has a value in it that's a config node, clone it.
for base in bases:
if not isConfigNode(base):
continue
for key,value in base._values.iteritems():
if dict.has_key(key):
continue
if isConfigNode(value):
priv['_values'][key] = value()
elif isSimObjSequence(value):
priv['_values'][key] = [ val() for val in value ]
# entries left in dict will get passed to __init__, where we'll
# deal with them as params.
return super(MetaConfigNode, mcls).__new__(mcls, name, bases, priv)
# initialization
def __init__(cls, name, bases, dict):
super(MetaConfigNode, cls).__init__(cls, name, bases, {})
cls._bases = [c for c in cls.__mro__ if isConfigNode(c)]
# initialize attributes with values from class definition
for key,value in dict.iteritems():
# turn an expression that was munged in the importer
# because it had dots into a list so that we can find the
# proper variable to modify.
key = key.split(dot_decorator)
c = cls
for item in key[:-1]:
c = getattr(c, item)
setattr(c, key[-1], value)
def _isvalue(cls, name):
for c in cls._bases:
if c._params.has_key(name):
return True
for c in cls._bases:
if c._values.has_key(name):
return True
return False
# generator that iterates across all parameters for this class and
# all classes it inherits from
def _getparams(cls):
params = {}
for c in cls._bases:
for p,v in c._params.iteritems():
if not params.has_key(p):
params[p] = v
return params
# Lookup a parameter description by name in the given class.
def _getparam(cls, name, default = AttributeError):
for c in cls._bases:
if c._params.has_key(name):
return c._params[name]
if isSubClass(default, Exception):
raise default, \
"object '%s' has no attribute '%s'" % (cls.__name__, name)
else:
return default
def _setparam(cls, name, value):
cls._params[name] = value
def _hasvalue(cls, name):
for c in cls._bases:
if c._values.has_key(name):
return True
return False
def _getvalues(cls):
values = {}
for i,c in enumerate(cls._bases):
for p,v in c._values.iteritems():
if not values.has_key(p):
values[p] = v
for p,v in c._params.iteritems():
if not values.has_key(p) and hasattr(v, 'default'):
v.valid(v.default)
v = v.default
cls._setvalue(p, v)
values[p] = v
return values
def _getvalue(cls, name, default = AttributeError):
value = None
for c in cls._bases:
if c._values.has_key(name):
value = c._values[name]
break
if value is not None:
return value
param = cls._getparam(name, None)
if param is not None and hasattr(param, 'default'):
param.valid(param.default)
value = param.default
cls._setvalue(name, value)
return value
if isSubClass(default, Exception):
raise default, 'value for %s not found' % name
else:
return default
def _setvalue(cls, name, value):
cls._values[name] = value
def _getdisable(cls, name):
for c in cls._bases:
if c._disable.has_key(name):
return c._disable[name]
return False
def _setdisable(cls, name, value):
cls._disable[name] = value
def __getattr__(cls, attr):
if cls._isvalue(attr):
return Value(cls, attr)
if attr == '_cppname' and hasattr(cls, 'type'):
return cls.type + '*'
raise AttributeError, \
"object '%s' has no attribute '%s'" % (cls.__name__, attr)
# Set attribute (called on foo.attr = value when foo is an
# instance of class cls).
def __setattr__(cls, attr, value):
# normal processing for private attributes
if attr.startswith('_'):
type.__setattr__(cls, attr, value)
return
if cls.keywords.has_key(attr):
raise TypeError, \
"keyword '%s' can only be set in a simobj definition" % attr
if isParam(value):
cls._setparam(attr, value)
return
# must be SimObject param
param = cls._getparam(attr, None)
if param:
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value
param.valid(value)
cls._setvalue(attr, value)
elif isConfigNode(value) or isSimObjSequence(value):
cls._setvalue(attr, value)
else:
for p,v in cls._getparams().iteritems():
print p,v
raise AttributeError, \
"Class %s has no parameter %s" % (cls.__name__, attr)
def add_child(cls, instance, name, child):
if isNullPointer(child) or instance.top_child_names.has_key(name):
return
if issequence(child):
kid = []
for i,c in enumerate(child):
n = '%s%d' % (name, i)
k = c.instantiate(n, instance)
instance.children.append(k)
instance.child_names[n] = k
instance.child_objects[c] = k
kid.append(k)
else:
kid = child.instantiate(name, instance)
instance.children.append(kid)
instance.child_names[name] = kid
instance.child_objects[child] = kid
instance.top_child_names[name] = kid
# Print instance info to .ini file.
def instantiate(cls, name, parent = None):
instance = Node(name, cls, cls.type, parent, isParamContext(cls))
if hasattr(cls, 'check'):
cls.check()
for key,value in cls._getvalues().iteritems():
if cls._getdisable(key):
continue
if isConfigNode(value):
cls.add_child(instance, key, value)
if issequence(value):
list = [ v for v in value if isConfigNode(v) ]
if len(list):
cls.add_child(instance, key, list)
for pname,param in cls._getparams().iteritems():
try:
if cls._getdisable(pname):
continue
try:
value = cls._getvalue(pname)
except:
print 'Error getting %s' % pname
raise
if isConfigNode(value):
value = instance.child_objects[value]
elif issequence(value):
v = []
for val in value:
if isConfigNode(val):
v.append(instance.child_objects[val])
else:
v.append(val)
value = v
p = NodeParam(pname, param, value)
instance.params.append(p)
instance.param_names[pname] = p
except:
print 'Exception while evaluating %s.%s' % \
(instance.path, pname)
raise
return instance
def _convert(cls, value):
realvalue = value
if isinstance(value, Node):
realvalue = value.realtype
if isinstance(realvalue, Proxy):
return value
if realvalue == None or isNullPointer(realvalue):
return value
if isSubClass(realvalue, cls):
return value
raise TypeError, 'object %s type %s wrong type, should be %s' % \
(repr(realvalue), realvalue, cls)
def _string(cls, value):
if isNullPointer(value):
return 'Null'
return Node._string(value)
# The ConfigNode class is the root of the special hierarchy. Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class ConfigNode(object):
# Specify metaclass. Any class inheriting from ConfigNode will
# get this metaclass.
__metaclass__ = MetaConfigNode
type = None
def __new__(cls, **kwargs):
return MetaConfigNode(cls.__name__, (cls, ), kwargs)
# Set attribute. All attribute assignments go through here. Must
# be private attribute (starts with '_') or valid parameter entry.
# Basically identical to MetaConfigClass.__setattr__(), except
# this sets attributes on specific instances rather than on classes.
#def __setattr__(self, attr, value):
# if attr.startswith('_'):
# object.__setattr__(self, attr, value)
# return
# not private; look up as param
# param = self.__class__.lookup_param(attr)
# if not param:
# raise AttributeError, \
# "Class %s has no parameter %s" \
# % (self.__class__.__name__, attr)
# It's ok: set attribute by delegating to 'object' class.
# Note the use of param.make_value() to verify/canonicalize
# the assigned value.
# v = param.convert(value)
# object.__setattr__(self, attr, v)
class ParamContext(ConfigNode):
pass
# SimObject is a minimal extension of ConfigNode, implementing a
# hierarchy node that corresponds to an M5 SimObject. It prints out a
# "type=" line to indicate its SimObject class, prints out the
# assigned parameters corresponding to its class, and allows
# parameters to be set by keyword in the constructor. Note that most
# of the heavy lifting for the SimObject param handling is done in the
# MetaConfigNode metaclass.
class SimObject(ConfigNode):
def _sim_code(cls):
name = cls.__name__
param_names = cls._params.keys()
param_names.sort()
code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
decls = [" " + cls._params[pname].sim_decl(pname) \
for pname in param_names]
code += "\n".join(decls) + "\n"
code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
return code
_sim_code = classmethod(_sim_code)
class NodeParam(object):
def __init__(self, name, param, value):
self.name = name
self.param = param
self.ptype = param.ptype
self.convert = param.convert
self.string = param.string
self.value = value
class Node(object):
all = {}
def __init__(self, name, realtype, type, parent, paramcontext):
self.name = name
self.realtype = realtype
self.type = type
self.parent = parent
self.children = []
self.child_names = {}
self.child_objects = {}
self.top_child_names = {}
self.params = []
self.param_names = {}
self.paramcontext = paramcontext
path = [ self.name ]
node = self.parent
while node is not None:
if node.name != 'root':
path.insert(0, node.name)
else:
assert(node.parent is None)
node = node.parent
self.path = '.'.join(path)
def find(self, realtype, path):
if not path:
if issubclass(self.realtype, realtype):
return self, True
obj = None
for child in self.children:
if issubclass(child.realtype, realtype):
if obj is not None:
raise AttributeError, \
'Super matched more than one: %s %s' % \
(obj.path, child.path)
obj = child
return obj, obj is not None
try:
obj = self
for node in path[:-1]:
obj = obj.child_names[node]
last = path[-1]
if obj.child_names.has_key(last):
value = obj.child_names[last]
if issubclass(value.realtype, realtype):
return value, True
elif obj.param_names.has_key(last):
value = obj.param_names[last]
realtype._convert(value.value)
return value.value, True
except KeyError:
pass
return None, False
def unproxy(self, ptype, value):
if not isinstance(value, Proxy):
return value
if value is None:
raise AttributeError, 'Error while fixing up %s' % self.path
obj = self
done = False
while not done:
if obj is None:
raise AttributeError, \
'Parent of %s type %s not found at path %s' \
% (self.name, ptype, value._path)
found, done = obj.find(ptype, value._path)
if isinstance(found, Proxy):
done = False
obj = obj.parent
return found
def fixup(self):
self.all[self.path] = self
for param in self.params:
ptype = param.ptype
pval = param.value
try:
if issequence(pval):
param.value = [ self.unproxy(ptype, pv) for pv in pval ]
else:
param.value = self.unproxy(ptype, pval)
except:
print 'Error while fixing up %s:%s' % (self.path, param.name)
raise
for child in self.children:
assert(child != self)
child.fixup()
# print type and parameter values to .ini file
def display(self):
print '[' + self.path + ']' # .ini section header
if isSimObject(self.realtype):
print 'type = %s' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
children = [ c.name for c in self.children if not c.paramcontext]
print 'children =', ' '.join(children)
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.convert(param.value)
string = param.string(value)
except:
print 'exception in %s:%s' % (self.path, param.name)
raise
print '%s = %s' % (param.name, string)
print
# recursively dump out children
for c in self.children:
c.display()
# print type and parameter values to .ini file
def outputDot(self, dot):
label = "{%s|" % self.path
if isSimObject(self.realtype):
label += '%s|' % self.type
if self.children:
# instantiate children in same order they were added for
# backward compatibility (else we can end up with cpu1
# before cpu0).
for c in self.children:
dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))
simobjs = []
for param in self.params:
try:
if param.value is None:
raise AttributeError, 'Parameter with no value'
value = param.convert(param.value)
string = param.string(value)
except:
print 'exception in %s:%s' % (self.name, param.name)
raise
if isConfigNode(param.ptype) and string != "Null":
simobjs.append(string)
else:
label += '%s = %s\\n' % (param.name, string)
for so in simobjs:
label += "|<%s> %s" % (so, so)
dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so, tailport="w"))
label += '}'
dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))
# recursively dump out children
for c in self.children:
c.outputDot(dot)
def _string(cls, value):
if not isinstance(value, Node):
raise AttributeError, 'expecting %s got %s' % (Node, value)
return value.path
_string = classmethod(_string)
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files). The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################
def isNullPointer(value):
return isinstance(value, NullSimObject)
class Value(object):
def __init__(self, obj, attr):
super(Value, self).__setattr__('attr', attr)
super(Value, self).__setattr__('obj', obj)
def _getattr(self):
return self.obj._getvalue(self.attr)
def __setattr__(self, attr, value):
if attr == 'disable':
self.obj._setdisable(self.attr, value)
else:
setattr(self._getattr(), attr, value)
def __getattr__(self, attr):
if attr == 'disable':
return self.obj._getdisable(self.attr)
else:
return getattr(self._getattr(), attr)
def __getitem__(self, index):
return self._getattr().__getitem__(index)
def __call__(self, *args, **kwargs):
return self._getattr().__call__(*args, **kwargs)
def __nonzero__(self):
return bool(self._getattr())
def __str__(self):
return str(self._getattr())
# Regular parameter.
class _Param(object):
def __init__(self, ptype_string, *args, **kwargs):
self.ptype_string = ptype_string
# can't eval ptype_string here to get ptype, since the type might
# not have been defined yet. Do it lazily in __getattr__.
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
try:
self.ptype = eval(self.ptype_string)
return self.ptype
except:
raise TypeError, 'Param.%s: undefined type' % self.ptype_string
else:
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def valid(self, value):
if not isinstance(value, Proxy):
self.ptype._convert(value)
def convert(self, value):
return self.ptype._convert(value)
def string(self, value):
return self.ptype._string(value)
def set(self, name, instance, value):
instance.__dict__[name] = value
def sim_decl(self, name):
return '%s %s;' % (self.ptype._cppname, name)
class _ParamProxy(object):
def __init__(self, type):
self.ptype = type
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
return _Param(self.ptype, *args, **kwargs)
def __getattr__(self, attr):
if attr == '__bases__':
raise AttributeError, ''
cls = type(self)
return cls(attr)
def __setattr__(self, attr, value):
if attr != 'ptype':
raise AttributeError, \
'Attribute %s not available in %s' % (attr, self.__class__)
super(_ParamProxy, self).__setattr__(attr, value)
Param = _ParamProxy(None)
# Vector-valued parameter description. Just like Param, except that
# the value is a vector (list) of the specified type instead of a
# single value.
class _VectorParam(_Param):
def __init__(self, type, *args, **kwargs):
_Param.__init__(self, type, *args, **kwargs)
def valid(self, value):
if value == None:
return True
if issequence(value):
for val in value:
if not isinstance(val, Proxy):
self.ptype._convert(val)
elif not isinstance(value, Proxy):
self.ptype._convert(value)
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if value == None:
return []
if issequence(value):
# list: coerce each element into new list
return [ self.ptype._convert(v) for v in value ]
else:
# singleton: coerce & wrap in a list
return self.ptype._convert(value)
def string(self, value):
if issequence(value):
return ' '.join([ self.ptype._string(v) for v in value])
else:
return self.ptype._string(value)
def sim_decl(self, name):
return 'std::vector<%s> %s;' % (self.ptype._cppname, name)
class _VectorParamProxy(_ParamProxy):
# E.g., VectorParam.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
return _VectorParam(self.ptype, *args, **kwargs)
VectorParam = _VectorParamProxy(None)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method). Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################
# Integer parameter type.
class _CheckedInt(object):
def _convert(cls, value):
t = type(value)
if t == bool:
return int(value)
if t != int and t != long and t != float and t != str:
raise TypeError, 'Integer parameter of invalid type %s' % t
if t == str or t == float:
value = long(value)
if not cls._min <= value <= cls._max:
raise TypeError, 'Integer parameter out of bounds %d < %d < %d' % \
(cls._min, value, cls._max)
return value
_convert = classmethod(_convert)
def _string(cls, value):
return str(value)
_string = classmethod(_string)
class CheckedInt(type):
def __new__(cls, cppname, min, max):
# New class derives from _CheckedInt base with proper bounding
# parameters
dict = { '_cppname' : cppname, '_min' : min, '_max' : max }
return type.__new__(cls, cppname, (_CheckedInt, ), dict)
class CheckedIntType(CheckedInt):
def __new__(cls, cppname, size, unsigned):
dict = {}
if unsigned:
min = 0
max = 2 ** size - 1
else:
min = -(2 ** (size - 1))
max = (2 ** (size - 1)) - 1
return super(cls, CheckedIntType).__new__(cls, cppname, min, max)
Int = CheckedIntType('int', 32, False)
Unsigned = CheckedIntType('unsigned', 32, True)
Int8 = CheckedIntType('int8_t', 8, False)
UInt8 = CheckedIntType('uint8_t', 8, True)
Int16 = CheckedIntType('int16_t', 16, False)
UInt16 = CheckedIntType('uint16_t', 16, True)
Int32 = CheckedIntType('int32_t', 32, False)
UInt32 = CheckedIntType('uint32_t', 32, True)
Int64 = CheckedIntType('int64_t', 64, False)
UInt64 = CheckedIntType('uint64_t', 64, True)
Counter = CheckedIntType('Counter', 64, True)
Addr = CheckedIntType('Addr', 64, True)
Tick = CheckedIntType('Tick', 64, True)
Percent = CheckedInt('int', 0, 100)
class Pair(object):
def __init__(self, first, second):
self.first = first
self.second = second
class _Range(object):
def _convert(cls, value):
if not isinstance(value, Pair):
raise TypeError, 'value %s is not a Pair' % value
return Pair(cls._type._convert(value.first),
cls._type._convert(value.second))
_convert = classmethod(_convert)
def _string(cls, value):
return '%s:%s' % (cls._type._string(value.first),
cls._type._string(value.second))
_string = classmethod(_string)
def RangeSize(start, size):
return Pair(start, start + size - 1)
class Range(type):
def __new__(cls, type):
dict = { '_cppname' : 'Range<%s>' % type._cppname, '_type' : type }
clsname = 'Range_' + type.__name__
return super(cls, Range).__new__(cls, clsname, (_Range, ), dict)
AddrRange = Range(Addr)
# Boolean parameter type.
class Bool(object):
_cppname = 'bool'
def _convert(value):
t = type(value)
if t == bool:
return value
if t == int or t == long:
return bool(value)
if t == str:
v = value.lower()
if v == "true" or v == "t" or v == "yes" or v == "y":
return True
elif v == "false" or v == "f" or v == "no" or v == "n":
return False
raise TypeError, 'Bool parameter (%s) of invalid type %s' % (v, t)
_convert = staticmethod(_convert)
def _string(value):
if value:
return "true"
else:
return "false"
_string = staticmethod(_string)
# String-valued parameter.
class String(object):
_cppname = 'string'
# Constructor. Value must be Python string.
def _convert(cls,value):
if value is None:
return ''
if isinstance(value, str):
return value
raise TypeError, \
"String param got value %s %s" % (repr(value), type(value))
_convert = classmethod(_convert)
# Generate printable string version. Not too tricky.
def _string(cls, value):
return value
_string = classmethod(_string)
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
class NextEthernetAddr(object):
__metaclass__ = Singleton
addr = "00:90:00:00:00:01"
def __init__(self, inc = 1):
self.value = self.addr
self.addr = IncEthernetAddr(self.addr, inc)
class EthernetAddr(object):
_cppname = 'EthAddr'
def _convert(cls, value):
if value == NextEthernetAddr:
return value
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
return value
_convert = classmethod(_convert)
def _string(cls, value):
if value == NextEthernetAddr:
value = value().value
return value
_string = classmethod(_string)
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
_cppname = 'NULL'
def __call__(cls):
return cls
def _sim_code(cls):
pass
_sim_code = classmethod(_sim_code)
def _instantiate(self, parent = None, path = ''):
pass
def _convert(cls, value):
if value == Nxone:
return
if isinstance(value, cls):
return value
raise TypeError, 'object %s %s of the wrong type, should be %s' % \
(repr(value), type(value), cls)
_convert = classmethod(_convert)
def _string():
return 'NULL'
_string = staticmethod(_string)
# The only instance you'll ever need...
Null = NULL = NullSimObject()
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
# Base class for Enum types.
class _Enum(object):
def _convert(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.map)
return value
_convert = classmethod(_convert)
# Generate printable string version of value.
def _string(self, value):
return str(value)
_string = classmethod(_string)
# Enum metaclass... calling Enum(foo) generates a new type (class)
# that derives from _ListEnum or _DictEnum as appropriate.
class Enum(type):
# counter to generate unique names for generated classes
counter = 1
def __new__(cls, *args):
if len(args) > 1:
enum_map = args
else:
enum_map = args[0]
if isinstance(enum_map, dict):
map = enum_map
elif issequence(enum_map):
map = {}
for idx,val in enumerate(enum_map):
map[val] = idx
else:
raise TypeError, "Enum map must be list or dict (got %s)" % map
classname = "Enum%04d" % Enum.counter
Enum.counter += 1
# New class derives from _Enum base, and gets a 'map'
# attribute containing the specified list or dict.
return type.__new__(cls, classname, (_Enum, ), { 'map': map })
#
# "Constants"... handy aliases for various values.
#
# Some memory range specifications use this as a default upper bound.
MAX_ADDR = Addr._max
MaxTick = Tick._max
# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
K = 1024
M = K*K
G = K*M
#####################################################################
# The final hook to generate .ini files. Called from configuration
# script once config is built.
def instantiate(root):
if not issubclass(root, Root):
raise AttributeError, 'Can only instantiate the Root of the tree'
instance = root.instantiate('root')
instance.fixup()
instance.display()
if not noDot:
dot = pydot.Dot()
instance.outputDot(dot)
dot.orientation = "portrait"
dot.size = "8.5,11"
dot.ranksep="equally"
dot.rank="samerank"
dot.write("config.dot")
dot.write_ps("config.ps")
from objects import *
|