1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
// -*- mode:c++ -*-
// Copyright (c) 2010 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2007-2008 The Florida State University
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Stephen Hines
////////////////////////////////////////////////////////////////////
//
// The actual ARM ISA decoder
// --------------------------
// The following instructions are specified in the ARM ISA
// Specification. Decoding closely follows the style specified
// in the ARM ISA specification document starting with Table B.1 or 3-1
//
//
0: decode ENCODING {
format DataOp {
0x0: decode SEVEN_AND_FOUR {
1: decode MISC_OPCODE {
0x9: decode PREPOST {
0: decode OPCODE {
0x0: mul({{ Rn = resTemp = Rm * Rs; }}, none);
0x1: mla({{ Rn = resTemp = (Rm * Rs) + Rd; }}, none);
0x2: WarnUnimpl::umall();
0x4: umull({{
resTemp = ((uint64_t)Rm)*((uint64_t)Rs);
Rd = (uint32_t)(resTemp & 0xffffffff);
Rn = (uint32_t)(resTemp >> 32);
}}, llbit);
0x5: smlal({{
resTemp = ((int64_t)Rm) * ((int64_t)Rs);
resTemp += (((uint64_t)Rn) << 32) | ((uint64_t)Rd);
Rd = (uint32_t)(resTemp & 0xffffffff);
Rn = (uint32_t)(resTemp >> 32);
}}, llbit);
0x6: smull({{
resTemp = ((int64_t)(int32_t)Rm)*
((int64_t)(int32_t)Rs);
Rd = (int32_t)(resTemp & 0xffffffff);
Rn = (int32_t)(resTemp >> 32);
}}, llbit);
0x7: umlal({{
resTemp = ((uint64_t)Rm)*((uint64_t)Rs);
resTemp += ((uint64_t)Rn << 32)+((uint64_t)Rd);
Rd = (uint32_t)(resTemp & 0xffffffff);
Rn = (uint32_t)(resTemp >> 32);
}}, llbit);
}
1: decode PUBWL {
0x10: WarnUnimpl::swp();
0x14: WarnUnimpl::swpb();
0x18: WarnUnimpl::strex();
0x19: WarnUnimpl::ldrex();
}
}
0xb, 0xd, 0xf: AddrMode3::addrMode3();
}
0: decode IS_MISC {
0: ArmDataProcReg::armDataProcReg();
1: decode MISC_OPCODE {
0x0: decode OPCODE {
0x8: PredOp::mrs_cpsr({{
Rd = (Cpsr | CondCodes) & 0xF8FF03DF;
}});
0x9: decode USEIMM {
// The mask field is the same as the RN index.
0: PredOp::msr_cpsr_reg({{
uint32_t newCpsr =
cpsrWriteByInstr(Cpsr | CondCodes,
Rm, RN, false);
Cpsr = ~CondCodesMask & newCpsr;
CondCodes = CondCodesMask & newCpsr;
}});
1: PredImmOp::msr_cpsr_imm({{
uint32_t newCpsr =
cpsrWriteByInstr(Cpsr | CondCodes,
rotated_imm, RN, false);
Cpsr = ~CondCodesMask & newCpsr;
CondCodes = CondCodesMask & newCpsr;
}});
}
0xa: PredOp::mrs_spsr({{ Rd = Spsr; }});
0xb: decode USEIMM {
// The mask field is the same as the RN index.
0: PredOp::msr_spsr_reg({{
Spsr = spsrWriteByInstr(Spsr, Rm, RN, false);
}});
1: PredImmOp::msr_spsr_imm({{
Spsr = spsrWriteByInstr(Spsr, rotated_imm,
RN, false);
}});
}
}
0x1: decode OPCODE {
0x9: BranchExchange::oldbx({{ }});
0xb: PredOp::clz({{
Rd = ((Rm == 0) ? 32 : (31 - findMsbSet(Rm)));
}});
}
0x2: decode OPCODE {
0x9: WarnUnimpl::bxj();
}
0x3: decode OPCODE {
0x9: BranchExchange::oldblx({{ }}, Link);
}
0x5: decode OPCODE {
0x8: WarnUnimpl::qadd();
0x9: WarnUnimpl::qsub();
0xa: WarnUnimpl::qdadd();
0xb: WarnUnimpl::qdsub();
}
0x8: decode OPCODE {
0x8: smlabb({{ Rn = resTemp = sext<16>(Rm<15:0>) * sext<16>(Rs<15:0>) + Rd; }}, overflow);
0x9: WarnUnimpl::smlalbb();
0xa: WarnUnimpl::smlawb();
0xb: smulbb({{ Rn = resTemp = sext<16>(Rm<15:0>) * sext<16>(Rs<15:0>); }}, none);
}
0xa: decode OPCODE {
0x8: smlatb({{ Rn = resTemp = sext<16>(Rm<31:16>) * sext<16>(Rs<15:0>) + Rd; }}, overflow);
0x9: smulwb({{
Rn = resTemp = bits(sext<32>(Rm) * sext<16>(Rs<15:0>), 47, 16);
}}, none);
0xa: WarnUnimpl::smlaltb();
0xb: smultb({{ Rn = resTemp = sext<16>(Rm<31:16>) * sext<16>(Rs<15:0>); }}, none);
}
0xc: decode OPCODE {
0x8: smlabt({{ Rn = resTemp = sext<16>(Rm<15:0>) * sext<16>(Rs<31:16>) + Rd; }}, overflow);
0x9: WarnUnimpl::smlawt();
0xa: WarnUnimpl::smlalbt();
0xb: smulbt({{ Rn = resTemp = sext<16>(Rm<15:0>) * sext<16>(Rs<31:16>); }}, none);
}
0xe: decode OPCODE {
0x8: smlatt({{ Rn = resTemp = sext<16>(Rm<31:16>) * sext<16>(Rs<31:16>) + Rd; }}, overflow);
0x9: smulwt({{
Rn = resTemp = bits(sext<32>(Rm) * sext<16>(Rs<31:16>), 47, 16);
}}, none);
0xa: WarnUnimpl::smlaltt();
0xb: smultt({{ Rn = resTemp = sext<16>(Rm<31:16>) * sext<16>(Rs<31:16>); }}, none);
}
}
}
}
0x1: decode IS_MISC {
0: ArmDataProcImm::armDataProcImm();
1: decode OPCODE {
// The following two instructions aren't supposed to be defined
0x8: DataOp::movw({{ Rd = IMMED_11_0 | (RN << 12) ; }});
0x9: decode RN {
0: decode IMM {
0: PredImmOp::nop({{ ; }});
1: WarnUnimpl::yield();
2: WarnUnimpl::wfe();
3: WarnUnimpl::wfi();
4: WarnUnimpl::sev();
}
default: PredImmOp::msr_i_cpsr({{
uint32_t newCpsr =
cpsrWriteByInstr(Cpsr | CondCodes,
rotated_imm, RN, false);
Cpsr = ~CondCodesMask & newCpsr;
CondCodes = CondCodesMask & newCpsr;
}});
}
0xa: PredOp::movt({{ Rd = IMMED_11_0 << 16 | RN << 28 | Rd<15:0>; }});
0xb: PredImmOp::msr_i_spsr({{
Spsr = spsrWriteByInstr(Spsr, rotated_imm, RN, false);
}});
}
}
0x2: AddrMode2::addrMode2(True);
0x3: decode OPCODE_4 {
0: AddrMode2::addrMode2(False);
1: decode MEDIA_OPCODE {
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7: WarnUnimpl::parallel_add_subtract_instructions();
0x8: decode MISC_OPCODE {
0x1, 0x9: WarnUnimpl::pkhbt();
0x7: WarnUnimpl::sxtab16();
0xb: WarnUnimpl::sel();
0x5, 0xd: WarnUnimpl::pkhtb();
0x3: WarnUnimpl::sign_zero_extend_add();
}
0xa, 0xb: decode SHIFT {
0x0, 0x2: WarnUnimpl::ssat();
0x1: WarnUnimpl::ssat16();
}
0xe, 0xf: decode SHIFT {
0x0, 0x2: WarnUnimpl::usat();
0x1: WarnUnimpl::usat16();
}
0x10: decode RN {
0xf: decode MISC_OPCODE {
0x1: WarnUnimpl::smuad();
0x3: WarnUnimpl::smuadx();
0x5: WarnUnimpl::smusd();
0x7: WarnUnimpl::smusdx();
}
default: decode MISC_OPCODE {
0x1: WarnUnimpl::smlad();
0x3: WarnUnimpl::smladx();
0x5: WarnUnimpl::smlsd();
0x7: WarnUnimpl::smlsdx();
}
}
0x14: decode MISC_OPCODE {
0x1: WarnUnimpl::smlald();
0x3: WarnUnimpl::smlaldx();
0x5: WarnUnimpl::smlsld();
0x7: WarnUnimpl::smlsldx();
}
0x15: decode RN {
0xf: decode MISC_OPCODE {
0x1: WarnUnimpl::smmul();
0x3: WarnUnimpl::smmulr();
}
default: decode MISC_OPCODE {
0x1: WarnUnimpl::smmla();
0x3: WarnUnimpl::smmlar();
0xd: WarnUnimpl::smmls();
0xf: WarnUnimpl::smmlsr();
}
}
0x18: decode RN {
0xf: WarnUnimpl::usada8();
default: WarnUnimpl::usad8();
}
}
}
0x4: ArmMacroMem::armMacroMem();
0x5: decode OPCODE_24 {
// Branch (and Link) Instructions
0: Branch::oldb({{ }});
1: Branch::oldbl({{ }}, Link);
}
0x6: decode CPNUM {
0xb: decode LOADOP {
0x0: WarnUnimpl::fstmx();
0x1: WarnUnimpl::fldmx();
}
}
0x7: decode OPCODE_24 {
0: decode OPCODE_4 {
0: decode CPNUM {
0xa, 0xb: decode OPCODE_23_20 {
##include "vfp.isa"
}
} // CPNUM
1: decode CPNUM { // 27-24=1110,4 ==1
1: decode OPCODE_15_12 {
format FloatOp {
0xf: decode OPCODE_23_21 {
format FloatCmp {
0x4: cmf({{ Fn.df }}, {{ Fm.df }});
0x5: cnf({{ Fn.df }}, {{ -Fm.df }});
0x6: cmfe({{ Fn.df }}, {{ Fm.df}});
0x7: cnfe({{ Fn.df }}, {{ -Fm.df}});
}
}
default: decode OPCODE_23_20 {
0x0: decode OPCODE_7 {
0: flts({{ Fn.sf = (float) Rd.sw; }});
1: fltd({{ Fn.df = (double) Rd.sw; }});
}
0x1: decode OPCODE_7 {
0: fixs({{ Rd = (uint32_t) Fm.sf; }});
1: fixd({{ Rd = (uint32_t) Fm.df; }});
}
0x2: wfs({{ Fpsr = Rd; }});
0x3: rfs({{ Rd = Fpsr; }});
0x4: FailUnimpl::wfc();
0x5: FailUnimpl::rfc();
}
} // format FloatOp
}
0xa: decode MISC_OPCODE {
0x1: decode MEDIA_OPCODE {
0xf: decode RN {
0x0: FloatOp::fmrx_fpsid({{ Rd = Fpsid; }});
0x1: FloatOp::fmrx_fpscr({{ Rd = Fpscr; }});
0x8: FloatOp::fmrx_fpexc({{ Rd = Fpexc; }});
}
0xe: decode RN {
0x0: FloatOp::fmxr_fpsid({{ Fpsid = Rd; }});
0x1: FloatOp::fmxr_fpscr({{ Fpscr = Rd; }});
0x8: FloatOp::fmxr_fpexc({{ Fpexc = Rd; }});
}
} // MEDIA_OPCODE (MISC_OPCODE 0x1)
} // MISC_OPCODE (CPNUM 0xA)
0xf: decode RN {
// Barrriers, Cache Maintence, NOPS
7: decode OPCODE_23_21 {
0: decode RM {
0: decode OPC2 {
4: decode OPCODE_20 {
0: PredOp::mcr_cp15_nop1({{ }}); // was wfi
}
}
1: WarnUnimpl::cp15_cache_maint();
4: WarnUnimpl::cp15_par();
5: decode OPC2 {
0,1: WarnUnimpl::cp15_cache_maint2();
4: PredOp::cp15_isb({{ ; }}, IsMemBarrier, IsSerializeBefore);
6,7: WarnUnimpl::cp15_bp_maint();
}
6: WarnUnimpl::cp15_cache_maint3();
8: WarnUnimpl::cp15_va_to_pa();
10: decode OPC2 {
1,2: WarnUnimpl::cp15_cache_maint3();
4: PredOp::cp15_dsb({{ ; }}, IsMemBarrier, IsSerializeBefore);
5: PredOp::cp15_dmb({{ ; }}, IsMemBarrier, IsSerializeBefore);
}
11: WarnUnimpl::cp15_cache_maint4();
13: decode OPC2 {
1: decode OPCODE_20 {
0: PredOp::mcr_cp15_nop2({{ }}); // was prefetch
}
}
14: WarnUnimpl::cp15_cache_maint5();
} // RM
} // OPCODE_23_21 CR
// Thread ID and context ID registers
// Thread ID register needs cheaper access than miscreg
13: WarnUnimpl::mcr_mrc_cp15_c7();
// All the rest
default: decode OPCODE_20 {
0: PredOp::mcr_cp15({{
fault = setCp15Register(Rd, RN, OPCODE_23_21, RM, OPC2);
}});
1: PredOp::mrc_cp15({{
fault = readCp15Register(Rd, RN, OPCODE_23_21, RM, OPC2);
}});
}
} // RN
} // CPNUM (OP4 == 1)
} //OPCODE_4
#if FULL_SYSTEM
1: PredOp::swi({{ fault = new SupervisorCall; }}, IsSerializeAfter, IsNonSpeculative, IsSyscall);
#else
1: PredOp::swi({{ if (testPredicate(CondCodes, condCode))
{
if (IMMED_23_0)
xc->syscall(IMMED_23_0);
else
xc->syscall(R7);
}
}});
#endif // FULL_SYSTEM
} // OPCODE_24
}
}
|