1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/*
* Copyright (c) 2010, 2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
* Ali Saidi
*/
#include "arch/arm/process.hh"
#include "arch/arm/isa_traits.hh"
#include "arch/arm/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/byteswap.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"
using namespace std;
using namespace ArmISA;
ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
ObjectFile::Arch _arch)
: Process(params, new FuncPageTable(params->name, params->pid, PageBytes),
objFile),
arch(_arch)
{
fatal_if(!params->useArchPT, "Arch page tables not implemented.");
}
ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
ObjectFile::Arch _arch)
: ArmProcess(params, objFile, _arch)
{
Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
objFile->bssSize(), PageBytes);
Addr stack_base = 0xbf000000L;
Addr max_stack_size = 8 * 1024 * 1024;
Addr next_thread_stack_base = stack_base - max_stack_size;
Addr mmap_end = 0x40000000L;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
ObjectFile::Arch _arch)
: ArmProcess(params, objFile, _arch)
{
Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
objFile->bssSize(), PageBytes);
Addr stack_base = 0x7fffff0000L;
Addr max_stack_size = 8 * 1024 * 1024;
Addr next_thread_stack_base = stack_base - max_stack_size;
Addr mmap_end = 0x4000000000L;
memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
next_thread_stack_base, mmap_end);
}
void
ArmProcess32::initState()
{
Process::initState();
argsInit<uint32_t>(PageBytes, INTREG_SP);
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
// Enable the floating point coprocessors.
cpacr.cp10 = 0x3;
cpacr.cp11 = 0x3;
tc->setMiscReg(MISCREG_CPACR, cpacr);
// Generically enable floating point support.
FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
fpexc.en = 1;
tc->setMiscReg(MISCREG_FPEXC, fpexc);
}
}
void
ArmProcess64::initState()
{
Process::initState();
argsInit<uint64_t>(PageBytes, INTREG_SP0);
for (int i = 0; i < contextIds.size(); i++) {
ThreadContext * tc = system->getThreadContext(contextIds[i]);
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
cpsr.mode = MODE_EL0T;
tc->setMiscReg(MISCREG_CPSR, cpsr);
CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
// Enable the floating point coprocessors.
cpacr.cp10 = 0x3;
cpacr.cp11 = 0x3;
tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
// Generically enable floating point support.
FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
fpexc.en = 1;
tc->setMiscReg(MISCREG_FPEXC, fpexc);
}
}
template <class IntType>
void
ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
{
int intSize = sizeof(IntType);
typedef AuxVector<IntType> auxv_t;
std::vector<auxv_t> auxv;
string filename;
if (argv.size() < 1)
filename = "";
else
filename = argv[0];
//We want 16 byte alignment
uint64_t align = 16;
// Patch the ld_bias for dynamic executables.
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
enum ArmCpuFeature {
Arm_Swp = 1 << 0,
Arm_Half = 1 << 1,
Arm_Thumb = 1 << 2,
Arm_26Bit = 1 << 3,
Arm_FastMult = 1 << 4,
Arm_Fpa = 1 << 5,
Arm_Vfp = 1 << 6,
Arm_Edsp = 1 << 7,
Arm_Java = 1 << 8,
Arm_Iwmmxt = 1 << 9,
Arm_Crunch = 1 << 10,
Arm_ThumbEE = 1 << 11,
Arm_Neon = 1 << 12,
Arm_Vfpv3 = 1 << 13,
Arm_Vfpv3d16 = 1 << 14
};
//Setup the auxilliary vectors. These will already have endian conversion.
//Auxilliary vectors are loaded only for elf formatted executables.
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject) {
if (objFile->getOpSys() == ObjectFile::Linux) {
IntType features =
Arm_Swp |
Arm_Half |
Arm_Thumb |
// Arm_26Bit |
Arm_FastMult |
// Arm_Fpa |
Arm_Vfp |
Arm_Edsp |
// Arm_Java |
// Arm_Iwmmxt |
// Arm_Crunch |
Arm_ThumbEE |
Arm_Neon |
Arm_Vfpv3 |
Arm_Vfpv3d16 |
0;
//Bits which describe the system hardware capabilities
//XXX Figure out what these should be
auxv.push_back(auxv_t(M5_AT_HWCAP, features));
//Frequency at which times() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
//Whether to enable "secure mode" in the executable
auxv.push_back(auxv_t(M5_AT_SECURE, 0));
// Pointer to 16 bytes of random data
auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
//The filename of the program
auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
//The string "v71" -- ARM v7 architecture
auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
}
//The system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
// For statically linked executables, this is the virtual address of the
// program header tables if they appear in the executable image
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
//XXX Figure out what this should be.
auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
}
//Figure out how big the initial stack nedes to be
// A sentry NULL void pointer at the top of the stack.
int sentry_size = intSize;
string platform = "v71";
int platform_size = platform.size() + 1;
// Bytes for AT_RANDOM above, we'll just keep them 0
int aux_random_size = 16; // as per the specification
// The aux vectors are put on the stack in two groups. The first group are
// the vectors that are generated as the elf is loaded. The second group
// are the ones that were computed ahead of time and include the platform
// string.
int aux_data_size = filename.size() + 1;
int env_data_size = 0;
for (int i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int arg_data_size = 0;
for (int i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int info_block_size =
sentry_size + env_data_size + arg_data_size +
aux_data_size + platform_size + aux_random_size;
//Each auxilliary vector is two 4 byte words
int aux_array_size = intSize * 2 * (auxv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int argv_array_size = intSize * (argv.size() + 1);
int argc_size = intSize;
//Figure out the size of the contents of the actual initial frame
int frame_size =
info_block_size +
aux_array_size +
envp_array_size +
argv_array_size +
argc_size;
//There needs to be padding after the auxiliary vector data so that the
//very bottom of the stack is aligned properly.
int partial_size = frame_size;
int aligned_partial_size = roundUp(partial_size, align);
int aux_padding = aligned_partial_size - partial_size;
int space_needed = frame_size + aux_padding;
memState->setStackMin(memState->getStackBase() - space_needed);
memState->setStackMin(roundDown(memState->getStackMin(), align));
memState->setStackSize(memState->getStackBase() - memState->getStackMin());
// map memory
allocateMem(roundDown(memState->getStackMin(), pageSize),
roundUp(memState->getStackSize(), pageSize));
// map out initial stack contents
IntType sentry_base = memState->getStackBase() - sentry_size;
IntType aux_data_base = sentry_base - aux_data_size;
IntType env_data_base = aux_data_base - env_data_size;
IntType arg_data_base = env_data_base - arg_data_size;
IntType platform_base = arg_data_base - platform_size;
IntType aux_random_base = platform_base - aux_random_size;
IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
IntType envp_array_base = auxv_array_base - envp_array_size;
IntType argv_array_base = envp_array_base - argv_array_size;
IntType argc_base = argv_array_base - argc_size;
DPRINTF(Stack, "The addresses of items on the initial stack:\n");
DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
DPRINTF(Stack, "0x%x - env data\n", env_data_base);
DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
DPRINTF(Stack, "0x%x - platform base\n", platform_base);
DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
DPRINTF(Stack, "0x%x - argc \n", argc_base);
DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
// write contents to stack
// figure out argc
IntType argc = argv.size();
IntType guestArgc = ArmISA::htog(argc);
//Write out the sentry void *
IntType sentry_NULL = 0;
initVirtMem.writeBlob(sentry_base,
(uint8_t*)&sentry_NULL, sentry_size);
//Fix up the aux vectors which point to other data
for (int i = auxv.size() - 1; i >= 0; i--) {
if (auxv[i].a_type == M5_AT_PLATFORM) {
auxv[i].a_val = platform_base;
initVirtMem.writeString(platform_base, platform.c_str());
} else if (auxv[i].a_type == M5_AT_EXECFN) {
auxv[i].a_val = aux_data_base;
initVirtMem.writeString(aux_data_base, filename.c_str());
} else if (auxv[i].a_type == M5_AT_RANDOM) {
auxv[i].a_val = aux_random_base;
// Just leave the value 0, we don't want randomness
}
}
//Copy the aux stuff
for (int x = 0; x < auxv.size(); x++) {
initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
//Write out the terminating zeroed auxilliary vector
const uint64_t zero = 0;
initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
(uint8_t*)&zero, 2 * intSize);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
ThreadContext *tc = system->getThreadContext(contextIds[0]);
//Set the stack pointer register
tc->setIntReg(spIndex, memState->getStackMin());
//A pointer to a function to run when the program exits. We'll set this
//to zero explicitly to make sure this isn't used.
tc->setIntReg(ArgumentReg0, 0);
//Set argument regs 1 and 2 to argv[0] and envp[0] respectively
if (argv.size() > 0) {
tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
argv[argv.size() - 1].size() - 1);
} else {
tc->setIntReg(ArgumentReg1, 0);
}
if (envp.size() > 0) {
tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
envp[envp.size() - 1].size() - 1);
} else {
tc->setIntReg(ArgumentReg2, 0);
}
PCState pc;
pc.thumb(arch == ObjectFile::Thumb);
pc.nextThumb(pc.thumb());
pc.aarch64(arch == ObjectFile::Arm64);
pc.nextAArch64(pc.aarch64());
pc.set(getStartPC() & ~mask(1));
tc->pcState(pc);
//Align the "stackMin" to a page boundary.
memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
}
ArmISA::IntReg
ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 6);
return tc->readIntReg(ArgumentReg0 + i++);
}
ArmISA::IntReg
ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 8);
return tc->readIntReg(ArgumentReg0 + i++);
}
ArmISA::IntReg
ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
{
assert(width == 32 || width == 64);
if (width == 32)
return getSyscallArg(tc, i);
// 64 bit arguments are passed starting in an even register
if (i % 2 != 0)
i++;
// Registers r0-r6 can be used
assert(i < 5);
uint64_t val;
val = tc->readIntReg(ArgumentReg0 + i++);
val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
return val;
}
ArmISA::IntReg
ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
{
return getSyscallArg(tc, i);
}
void
ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
{
assert(i < 6);
tc->setIntReg(ArgumentReg0 + i, val);
}
void
ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
{
assert(i < 8);
tc->setIntReg(ArgumentReg0 + i, val);
}
void
ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (objFile->getOpSys() == ObjectFile::FreeBSD) {
// Decode return value
if (sysret.encodedValue() >= 0)
// FreeBSD checks the carry bit to determine if syscall is succeeded
tc->setCCReg(CCREG_C, 0);
else {
sysret = -sysret.encodedValue();
}
}
tc->setIntReg(ReturnValueReg, sysret.encodedValue());
}
void
ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (objFile->getOpSys() == ObjectFile::FreeBSD) {
// Decode return value
if (sysret.encodedValue() >= 0)
// FreeBSD checks the carry bit to determine if syscall is succeeded
tc->setCCReg(CCREG_C, 0);
else {
sysret = -sysret.encodedValue();
}
}
tc->setIntReg(ReturnValueReg, sysret.encodedValue());
}
|