1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
|
/*
* Copyright (c) 2009-2014 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#include <memory>
#include "arch/arm/faults.hh"
#include "arch/arm/isa_traits.hh"
#include "arch/arm/system.hh"
#include "arch/arm/tlb.hh"
#include "arch/arm/utility.hh"
#include "arch/arm/vtophys.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "mem/fs_translating_port_proxy.hh"
#include "sim/full_system.hh"
namespace ArmISA {
void
initCPU(ThreadContext *tc, int cpuId)
{
// Reset CP15?? What does that mean -- ali
// FPEXC.EN = 0
static Fault reset = std::make_shared<Reset>();
reset->invoke(tc);
}
uint64_t
getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
{
if (!FullSystem) {
panic("getArgument() only implemented for full system mode.\n");
M5_DUMMY_RETURN
}
if (fp)
panic("getArgument(): Floating point arguments not implemented\n");
if (inAArch64(tc)) {
if (size == (uint16_t)(-1))
size = sizeof(uint64_t);
if (number < 8 /*NumArgumentRegs64*/) {
return tc->readIntReg(number);
} else {
panic("getArgument(): No support reading stack args for AArch64\n");
}
} else {
if (size == (uint16_t)(-1))
// todo: should this not be sizeof(uint32_t) rather?
size = ArmISA::MachineBytes;
if (number < NumArgumentRegs) {
// If the argument is 64 bits, it must be in an even regiser
// number. Increment the number here if it isn't even.
if (size == sizeof(uint64_t)) {
if ((number % 2) != 0)
number++;
// Read the two halves of the data. Number is inc here to
// get the second half of the 64 bit reg.
uint64_t tmp;
tmp = tc->readIntReg(number++);
tmp |= tc->readIntReg(number) << 32;
return tmp;
} else {
return tc->readIntReg(number);
}
} else {
Addr sp = tc->readIntReg(StackPointerReg);
FSTranslatingPortProxy &vp = tc->getVirtProxy();
uint64_t arg;
if (size == sizeof(uint64_t)) {
// If the argument is even it must be aligned
if ((number % 2) != 0)
number++;
arg = vp.read<uint64_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
// since two 32 bit args == 1 64 bit arg, increment number
number++;
} else {
arg = vp.read<uint32_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
}
return arg;
}
}
panic("getArgument() should always return\n");
}
void
skipFunction(ThreadContext *tc)
{
PCState newPC = tc->pcState();
if (inAArch64(tc)) {
newPC.set(tc->readIntReg(INTREG_X30));
} else {
newPC.set(tc->readIntReg(ReturnAddressReg) & ~ULL(1));
}
CheckerCPU *checker = tc->getCheckerCpuPtr();
if (checker) {
tc->pcStateNoRecord(newPC);
} else {
tc->pcState(newPC);
}
}
void
copyRegs(ThreadContext *src, ThreadContext *dest)
{
for (int i = 0; i < NumIntRegs; i++)
dest->setIntRegFlat(i, src->readIntRegFlat(i));
for (int i = 0; i < NumFloatRegs; i++)
dest->setFloatRegFlat(i, src->readFloatRegFlat(i));
for (int i = 0; i < NumCCRegs; i++)
dest->setCCReg(i, src->readCCReg(i));
for (int i = 0; i < NumMiscRegs; i++)
dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
// setMiscReg "with effect" will set the misc register mapping correctly.
// e.g. updateRegMap(val)
dest->setMiscReg(MISCREG_CPSR, src->readMiscRegNoEffect(MISCREG_CPSR));
// Copy over the PC State
dest->pcState(src->pcState());
// Invalidate the tlb misc register cache
dest->getITBPtr()->invalidateMiscReg();
dest->getDTBPtr()->invalidateMiscReg();
}
bool
inSecureState(ThreadContext *tc)
{
SCR scr = inAArch64(tc) ? tc->readMiscReg(MISCREG_SCR_EL3) :
tc->readMiscReg(MISCREG_SCR);
return ArmSystem::haveSecurity(tc) && inSecureState(
scr, tc->readMiscReg(MISCREG_CPSR));
}
bool
inAArch64(ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
return opModeIs64((OperatingMode) (uint8_t) cpsr.mode);
}
bool
longDescFormatInUse(ThreadContext *tc)
{
TTBCR ttbcr = tc->readMiscReg(MISCREG_TTBCR);
return ArmSystem::haveLPAE(tc) && ttbcr.eae;
}
uint32_t
getMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
// Multiprocessor Affinity Register MPIDR from Cortex(tm)-A15 Technical
// Reference Manual
//
// bit 31 - Multi-processor extensions available
// bit 30 - Uni-processor system
// bit 24 - Multi-threaded cores
// bit 11-8 - Cluster ID
// bit 1-0 - CPU ID
//
// We deliberately extend both the Cluster ID and CPU ID fields to allow
// for simulation of larger systems
assert((0 <= tc->cpuId()) && (tc->cpuId() < 256));
assert((0 <= tc->socketId()) && (tc->socketId() < 65536));
if (arm_sys->multiProc) {
return 0x80000000 | // multiprocessor extensions available
tc->cpuId() | tc->socketId() << 8;
} else {
return 0x80000000 | // multiprocessor extensions available
0x40000000 | // in up system
tc->cpuId() | tc->socketId() << 8;
}
}
bool
ELIs64(ThreadContext *tc, ExceptionLevel el)
{
if (ArmSystem::highestEL(tc) == el)
// Register width is hard-wired
return ArmSystem::highestELIs64(tc);
switch (el) {
case EL0:
return opModeIs64(currOpMode(tc));
case EL1:
{
// @todo: uncomment this to enable Virtualization
// if (ArmSystem::haveVirtualization(tc)) {
// HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
// return hcr.rw;
// }
assert(ArmSystem::haveSecurity(tc));
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return scr.rw;
}
case EL2:
{
assert(ArmSystem::haveSecurity(tc));
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return scr.rw;
}
default:
panic("Invalid exception level");
break;
}
}
bool
isBigEndian64(ThreadContext *tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).ee;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).ee;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).ee;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).e0e;
default:
panic("Invalid exception level");
break;
}
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el)
{
TTBCR tcr;
switch (el) {
case EL0:
case EL1:
tcr = tc->readMiscReg(MISCREG_TCR_EL1);
if (bits(addr, 55, 48) == 0xFF && tcr.tbi1)
return addr | mask(63, 55);
else if (!bits(addr, 55, 48) && tcr.tbi0)
return bits(addr,55, 0);
break;
// @todo: uncomment this to enable Virtualization
// case EL2:
// assert(ArmSystem::haveVirtualization());
// tcr = tc->readMiscReg(MISCREG_TCR_EL2);
// if (tcr.tbi)
// return addr & mask(56);
// break;
case EL3:
assert(ArmSystem::haveSecurity(tc));
tcr = tc->readMiscReg(MISCREG_TCR_EL3);
if (tcr.tbi)
return addr & mask(56);
break;
default:
panic("Invalid exception level");
break;
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
truncPage(Addr addr)
{
return addr & ~(PageBytes - 1);
}
Addr
roundPage(Addr addr)
{
return (addr + PageBytes - 1) & ~(PageBytes - 1);
}
bool
mcrMrc15TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crn);
trapToHype |= hdcr.tpm && (crn == 9) && (crm >= 12);
trapToHype |= hcr.tidcp && (
((crn == 9) && ((crm <= 2) || ((crm >= 5) && (crm <= 8)))) ||
((crn == 10) && ((crm <= 1) || (crm == 4) || (crm == 8))) ||
((crn == 11) && ((crm <= 8) || (crm == 15))) );
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_CPACR:
trapToHype = hcptr.tcpac;
break;
case MISCREG_REVIDR:
case MISCREG_TCMTR:
case MISCREG_TLBTR:
case MISCREG_AIDR:
trapToHype = hcr.tid1;
break;
case MISCREG_CTR:
case MISCREG_CCSIDR:
case MISCREG_CLIDR:
case MISCREG_CSSELR:
trapToHype = hcr.tid2;
break;
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_AFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
trapToHype = hcr.tid3;
break;
case MISCREG_DCISW:
case MISCREG_DCCSW:
case MISCREG_DCCISW:
trapToHype = hcr.tsw;
break;
case MISCREG_DCIMVAC:
case MISCREG_DCCIMVAC:
case MISCREG_DCCMVAC:
trapToHype = hcr.tpc;
break;
case MISCREG_ICIMVAU:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DCCMVAU:
trapToHype = hcr.tpu;
break;
case MISCREG_TLBIALLIS:
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIASIDIS:
case MISCREG_TLBIMVAAIS:
case MISCREG_DTLBIALL:
case MISCREG_ITLBIALL:
case MISCREG_DTLBIMVA:
case MISCREG_ITLBIMVA:
case MISCREG_DTLBIASID:
case MISCREG_ITLBIASID:
case MISCREG_TLBIMVAA:
case MISCREG_TLBIALL:
case MISCREG_TLBIMVA:
case MISCREG_TLBIASID:
trapToHype = hcr.ttlb;
break;
case MISCREG_ACTLR:
trapToHype = hcr.tac;
break;
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
case MISCREG_PMCR:
trapToHype = hdcr.tpmcr;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrMrc14TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
inform("trap check M:%x N:%x 1:%x 2:%x hdcr %x, hcptr %x, hstr %x\n",
crm, crn, opc1, opc2, hdcr, hcptr, hstr);
trapToHype = hdcr.tda && (opc1 == 0);
trapToHype |= hcptr.tta && (opc1 == 1);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_DBGOSLSR:
case MISCREG_DBGOSLAR:
case MISCREG_DBGOSDLR:
case MISCREG_DBGPRCR:
trapToHype = hdcr.tdosa;
break;
case MISCREG_DBGDRAR:
case MISCREG_DBGDSAR:
trapToHype = hdcr.tdra;
break;
case MISCREG_JIDR:
trapToHype = hcr.tid0;
break;
case MISCREG_JOSCR:
case MISCREG_JMCR:
trapToHype = hstr.tjdbx;
break;
case MISCREG_TEECR:
case MISCREG_TEEHBR:
trapToHype = hstr.ttee;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrrMrrc15TrapToHyp(const MiscRegIndex miscReg, CPSR cpsr, SCR scr, HSTR hstr,
HCR hcr, uint32_t iss)
{
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool isRead;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
// This is technically the wrong function, but we can re-use it for
// the moment because we only need one field, which overlaps with the
// mcrmrc layout
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crm);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
msrMrs64TrapToSup(const MiscRegIndex miscReg, ExceptionLevel el,
CPACR cpacr /* CPACR_EL1 */)
{
bool trapToSup = false;
switch (miscReg) {
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
if ((el == EL0 && cpacr.fpen != 0x3) ||
(el == EL1 && !(cpacr.fpen & 0x1)))
trapToSup = true;
break;
default:
break;
}
return trapToSup;
}
bool
msrMrs64TrapToHyp(const MiscRegIndex miscReg, bool isRead,
CPTR cptr /* CPTR_EL2 */,
HCR hcr /* HCR_EL2 */,
bool * isVfpNeon)
{
bool trapToHyp = false;
*isVfpNeon = false;
switch (miscReg) {
// FP/SIMD regs
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
trapToHyp = cptr.tfp;
*isVfpNeon = true;
break;
// CPACR
case MISCREG_CPACR_EL1:
trapToHyp = cptr.tcpac;
break;
// Virtual memory control regs
case MISCREG_SCTLR_EL1:
case MISCREG_TTBR0_EL1:
case MISCREG_TTBR1_EL1:
case MISCREG_TCR_EL1:
case MISCREG_ESR_EL1:
case MISCREG_FAR_EL1:
case MISCREG_AFSR0_EL1:
case MISCREG_AFSR1_EL1:
case MISCREG_MAIR_EL1:
case MISCREG_AMAIR_EL1:
case MISCREG_CONTEXTIDR_EL1:
trapToHyp = (hcr.trvm && isRead) || (hcr.tvm && !isRead);
break;
// TLB maintenance instructions
case MISCREG_TLBI_VMALLE1:
case MISCREG_TLBI_VAE1_Xt:
case MISCREG_TLBI_ASIDE1_Xt:
case MISCREG_TLBI_VAAE1_Xt:
case MISCREG_TLBI_VALE1_Xt:
case MISCREG_TLBI_VAALE1_Xt:
case MISCREG_TLBI_VMALLE1IS:
case MISCREG_TLBI_VAE1IS_Xt:
case MISCREG_TLBI_ASIDE1IS_Xt:
case MISCREG_TLBI_VAAE1IS_Xt:
case MISCREG_TLBI_VALE1IS_Xt:
case MISCREG_TLBI_VAALE1IS_Xt:
trapToHyp = hcr.ttlb;
break;
// Cache maintenance instructions to the point of unification
case MISCREG_IC_IVAU_Xt:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DC_CVAU_Xt:
trapToHyp = hcr.tpu;
break;
// Data/Unified cache maintenance instructions to the point of coherency
case MISCREG_DC_IVAC_Xt:
case MISCREG_DC_CIVAC_Xt:
case MISCREG_DC_CVAC_Xt:
trapToHyp = hcr.tpc;
break;
// Data/Unified cache maintenance instructions by set/way
case MISCREG_DC_ISW_Xt:
case MISCREG_DC_CSW_Xt:
case MISCREG_DC_CISW_Xt:
trapToHyp = hcr.tsw;
break;
// ACTLR
case MISCREG_ACTLR_EL1:
trapToHyp = hcr.tacr;
break;
// @todo: Trap implementation-dependent functionality based on
// hcr.tidcp
// ID regs, group 3
case MISCREG_ID_PFR0_EL1:
case MISCREG_ID_PFR1_EL1:
case MISCREG_ID_DFR0_EL1:
case MISCREG_ID_AFR0_EL1:
case MISCREG_ID_MMFR0_EL1:
case MISCREG_ID_MMFR1_EL1:
case MISCREG_ID_MMFR2_EL1:
case MISCREG_ID_MMFR3_EL1:
case MISCREG_ID_ISAR0_EL1:
case MISCREG_ID_ISAR1_EL1:
case MISCREG_ID_ISAR2_EL1:
case MISCREG_ID_ISAR3_EL1:
case MISCREG_ID_ISAR4_EL1:
case MISCREG_ID_ISAR5_EL1:
case MISCREG_MVFR0_EL1:
case MISCREG_MVFR1_EL1:
case MISCREG_MVFR2_EL1:
case MISCREG_ID_AA64PFR0_EL1:
case MISCREG_ID_AA64PFR1_EL1:
case MISCREG_ID_AA64DFR0_EL1:
case MISCREG_ID_AA64DFR1_EL1:
case MISCREG_ID_AA64ISAR0_EL1:
case MISCREG_ID_AA64ISAR1_EL1:
case MISCREG_ID_AA64MMFR0_EL1:
case MISCREG_ID_AA64MMFR1_EL1:
case MISCREG_ID_AA64AFR0_EL1:
case MISCREG_ID_AA64AFR1_EL1:
assert(isRead);
trapToHyp = hcr.tid3;
break;
// ID regs, group 2
case MISCREG_CTR_EL0:
case MISCREG_CCSIDR_EL1:
case MISCREG_CLIDR_EL1:
case MISCREG_CSSELR_EL1:
trapToHyp = hcr.tid2;
break;
// ID regs, group 1
case MISCREG_AIDR_EL1:
case MISCREG_REVIDR_EL1:
assert(isRead);
trapToHyp = hcr.tid1;
break;
default:
break;
}
return trapToHyp;
}
bool
msrMrs64TrapToMon(const MiscRegIndex miscReg, CPTR cptr /* CPTR_EL3 */,
ExceptionLevel el, bool * isVfpNeon)
{
bool trapToMon = false;
*isVfpNeon = false;
switch (miscReg) {
// FP/SIMD regs
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
trapToMon = cptr.tfp;
*isVfpNeon = true;
break;
// CPACR, CPTR
case MISCREG_CPACR_EL1:
if (el == EL1) {
trapToMon = cptr.tcpac;
}
break;
case MISCREG_CPTR_EL2:
if (el == EL2) {
trapToMon = cptr.tcpac;
}
break;
default:
break;
}
return trapToMon;
}
bool
decodeMrsMsrBankedReg(uint8_t sysM, bool r, bool &isIntReg, int ®Idx,
CPSR cpsr, SCR scr, NSACR nsacr, bool checkSecurity)
{
OperatingMode mode = MODE_UNDEFINED;
bool ok = true;
// R mostly indicates if its a int register or a misc reg, we override
// below if the few corner cases
isIntReg = !r;
// Loosely based on ARM ARM issue C section B9.3.10
if (r) {
switch (sysM)
{
case 0xE:
regIdx = MISCREG_SPSR_FIQ;
mode = MODE_FIQ;
break;
case 0x10:
regIdx = MISCREG_SPSR_IRQ;
mode = MODE_IRQ;
break;
case 0x12:
regIdx = MISCREG_SPSR_SVC;
mode = MODE_SVC;
break;
case 0x14:
regIdx = MISCREG_SPSR_ABT;
mode = MODE_ABORT;
break;
case 0x16:
regIdx = MISCREG_SPSR_UND;
mode = MODE_UNDEFINED;
break;
case 0x1C:
regIdx = MISCREG_SPSR_MON;
mode = MODE_MON;
break;
case 0x1E:
regIdx = MISCREG_SPSR_HYP;
mode = MODE_HYP;
break;
default:
ok = false;
break;
}
} else {
int sysM4To3 = bits(sysM, 4, 3);
if (sysM4To3 == 0) {
mode = MODE_USER;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 1) {
mode = MODE_FIQ;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 3) {
if (bits(sysM, 1) == 0) {
mode = MODE_MON;
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
} else {
mode = MODE_HYP;
if (bits(sysM, 0) == 1) {
regIdx = intRegInMode(mode, 13); // R13 in HYP
} else {
isIntReg = false;
regIdx = MISCREG_ELR_HYP;
}
}
} else { // Other Banked registers
int sysM2 = bits(sysM, 2);
int sysM1 = bits(sysM, 1);
mode = (OperatingMode) ( ((sysM2 || sysM1) << 0) |
(1 << 1) |
((sysM2 && !sysM1) << 2) |
((sysM2 && sysM1) << 3) |
(1 << 4) );
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
// Don't flatten the register here. This is going to go through
// setIntReg() which will do the flattening
ok &= mode != cpsr.mode;
}
}
// Check that the requested register is accessable from the current mode
if (ok && checkSecurity && mode != cpsr.mode) {
switch (cpsr.mode)
{
case MODE_USER:
ok = false;
break;
case MODE_FIQ:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
break;
case MODE_HYP:
ok &= mode != MODE_MON;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
case MODE_IRQ:
case MODE_SVC:
case MODE_ABORT:
case MODE_UNDEFINED:
case MODE_SYSTEM:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
// can access everything, no further checks required
case MODE_MON:
break;
default:
panic("unknown Mode 0x%x\n", cpsr.mode);
break;
}
}
return (ok);
}
bool
vfpNeonEnabled(uint32_t &seq, HCPTR hcptr, NSACR nsacr, CPACR cpacr, CPSR cpsr,
uint32_t &iss, bool &trap, ThreadContext *tc, FPEXC fpexc,
bool isSIMD)
{
iss = 0;
trap = false;
bool undefined = false;
bool haveSecurity = ArmSystem::haveSecurity(tc);
bool haveVirtualization = ArmSystem::haveVirtualization(tc);
bool isSecure = inSecureState(tc);
// Non-secure view of CPACR and HCPTR determines behavior
// Copy register values
uint8_t cpacr_cp10 = cpacr.cp10;
bool cpacr_asedis = cpacr.asedis;
bool hcptr_cp10 = false;
bool hcptr_tase = false;
bool cp10_enabled = cpacr.cp10 == 0x3
|| (cpacr.cp10 == 0x1 && inPrivilegedMode(cpsr));
bool cp11_enabled = cpacr.cp11 == 0x3
|| (cpacr.cp11 == 0x1 && inPrivilegedMode(cpsr));
if (cp11_enabled) {
undefined |= !(fpexc.en && cp10_enabled);
} else {
undefined |= !(fpexc.en && cp10_enabled && (cpacr.cp11 == cpacr.cp10));
}
if (haveVirtualization) {
hcptr_cp10 = hcptr.tcp10;
undefined |= hcptr.tcp10 != hcptr.tcp11;
hcptr_tase = hcptr.tase;
}
if (haveSecurity) {
undefined |= nsacr.cp10 != nsacr.cp11;
if (!isSecure) {
// Modify register values to the Non-secure view
if (!nsacr.cp10) {
cpacr_cp10 = 0;
if (haveVirtualization) {
hcptr_cp10 = true;
}
}
if (nsacr.nsasedis) {
cpacr_asedis = true;
if (haveVirtualization) {
hcptr_tase = true;
}
}
}
}
// Check Coprocessor Access Control Register for permission to use CP10/11.
if (!haveVirtualization || (cpsr.mode != MODE_HYP)) {
switch (cpacr_cp10)
{
case 0:
undefined = true;
break;
case 1:
undefined |= inUserMode(cpsr);
break;
}
// Check if SIMD operations are disabled
if (isSIMD && cpacr_asedis) undefined = true;
}
// If required, check FPEXC enabled bit.
undefined |= !fpexc.en;
if (haveSecurity && haveVirtualization && !isSecure) {
if (hcptr_cp10 || (isSIMD && hcptr_tase)) {
iss = isSIMD ? (1 << 5) : 0xA;
trap = true;
}
}
return (!undefined);
}
bool
SPAlignmentCheckEnabled(ThreadContext* tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).sa;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).sa;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa0;
default:
panic("Invalid exception level");
break;
}
}
int
decodePhysAddrRange64(uint8_t pa_enc)
{
switch (pa_enc) {
case 0x0:
return 32;
case 0x1:
return 36;
case 0x2:
return 40;
case 0x3:
return 42;
case 0x4:
return 44;
case 0x5:
case 0x6:
case 0x7:
return 48;
default:
panic("Invalid phys. address range encoding");
}
}
uint8_t
encodePhysAddrRange64(int pa_size)
{
switch (pa_size) {
case 32:
return 0x0;
case 36:
return 0x1;
case 40:
return 0x2;
case 42:
return 0x3;
case 44:
return 0x4;
case 48:
return 0x5;
default:
panic("Invalid phys. address range");
}
}
} // namespace ArmISA
|