1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
// -*- mode:c++ -*-
// Copyright (c) 2007 MIPS Technologies, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Korey Sewell
////////////////////////////////////////////////////////////////////
//
// Floating Point operate instructions
//
output header {{
/**
* Base class for FP operations.
*/
class FPOp : public MipsStaticInst
{
protected:
/// Constructor
FPOp(const char *mnem, MachInst _machInst, OpClass __opClass) : MipsStaticInst(mnem, _machInst, __opClass)
{
}
//std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
//needs function to check for fpEnable or not
};
class FPCompareOp : public FPOp
{
protected:
FPCompareOp(const char *mnem, MachInst _machInst, OpClass __opClass) : FPOp(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string FPCompareOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
ccprintf(ss,"%d",CC);
if(_numSrcRegs > 0) {
ss << ", ";
printReg(ss, _srcRegIdx[0]);
}
if(_numSrcRegs > 1) {
ss << ", ";
printReg(ss, _srcRegIdx[1]);
}
return ss.str();
}
}};
output header {{
void fpResetCauseBits(ExecContext *cpu);
}};
output exec {{
inline Fault checkFpEnableFault(ExecContext *xc)
{
//@TODO: Implement correct CP0 checks to see if the CP1
// unit is enable or not
if (!isCoprocessorEnabled(xc, 1))
return std::make_shared<CoprocessorUnusableFault>(1);
return NoFault;
}
//If any operand is Nan return the appropriate QNaN
template <class T>
bool
fpNanOperands(FPOp *inst, ExecContext *xc, const T &src_type,
Trace::InstRecord *traceData)
{
uint64_t mips_nan = 0;
assert(sizeof(T) == 4);
for (int i = 0; i < inst->numSrcRegs(); i++) {
uint64_t src_bits = xc->readFloatRegOperandBits(inst, 0);
if (isNan(&src_bits, 32) ) {
mips_nan = MIPS32_QNAN;
xc->setFloatRegOperandBits(inst, 0, mips_nan);
if (traceData) { traceData->setData(mips_nan); }
return true;
}
}
return false;
}
template <class T>
bool
fpInvalidOp(FPOp *inst, ExecContext *cpu, const T dest_val,
Trace::InstRecord *traceData)
{
uint64_t mips_nan = 0;
T src_op = dest_val;
assert(sizeof(T) == 4);
if (isNan(&src_op, 32)) {
mips_nan = MIPS32_QNAN;
//Set value to QNAN
cpu->setFloatRegOperandBits(inst, 0, mips_nan);
//Read FCSR from FloatRegFile
uint32_t fcsr_bits =
cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR);
uint32_t new_fcsr = genInvalidVector(fcsr_bits);
//Write FCSR from FloatRegFile
cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, new_fcsr);
if (traceData) { traceData->setData(mips_nan); }
return true;
}
return false;
}
void
fpResetCauseBits(ExecContext *cpu)
{
//Read FCSR from FloatRegFile
uint32_t fcsr = cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR);
// TODO: Use utility function here
fcsr = bits(fcsr, 31, 18) << 18 | bits(fcsr, 11, 0);
//Write FCSR from FloatRegFile
cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, fcsr);
}
}};
def template FloatingPointExecute {{
Fault %(class_name)s::execute(
ExecContext *xc, Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
//When is the right time to reset cause bits?
//start of every instruction or every cycle?
if (FullSystem)
fpResetCauseBits(xc);
%(op_decl)s;
%(op_rd)s;
//Check if any FP operand is a NaN value
if (!fpNanOperands((FPOp*)this, xc, Fd, traceData)) {
%(code)s;
//Change this code for Full-System/Sycall Emulation
//separation
//----
//Should Full System-Mode throw a fault here?
//----
//Check for IEEE 754 FP Exceptions
//fault = fpNanOperands((FPOp*)this, xc, Fd, traceData);
bool invalid_op = false;
if (FullSystem) {
invalid_op =
fpInvalidOp((FPOp*)this, xc, Fd, traceData);
}
if (!invalid_op && fault == NoFault) {
%(op_wb)s;
}
}
return fault;
}
}};
// Primary format for float point operate instructions:
def format FloatOp(code, *flags) {{
iop = InstObjParams(name, Name, 'FPOp', code, flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = FloatingPointExecute.subst(iop)
}};
def format FloatCompareOp(cond_code, *flags) {{
import sys
code = 'bool cond;\n'
if '_sf' in cond_code or 'SinglePrecision' in flags:
if 'QnanException' in flags:
code += 'if (isQnan(&Fs_sf, 32) || isQnan(&Ft_sf, 32)) {\n'
code += '\tFCSR = genInvalidVector(FCSR);\n'
code += '\treturn NoFault;'
code += '}\n else '
code += 'if (isNan(&Fs_sf, 32) || isNan(&Ft_sf, 32)) {\n'
elif '_df' in cond_code or 'DoublePrecision' in flags:
if 'QnanException' in flags:
code += 'if (isQnan(&Fs_df, 64) || isQnan(&Ft_df, 64)) {\n'
code += '\tFCSR = genInvalidVector(FCSR);\n'
code += '\treturn NoFault;'
code += '}\n else '
code += 'if (isNan(&Fs_df, 64) || isNan(&Ft_df, 64)) {\n'
else:
sys.exit('Decoder Failed: Can\'t Determine Operand Type\n')
if 'UnorderedTrue' in flags:
code += 'cond = 1;\n'
elif 'UnorderedFalse' in flags:
code += 'cond = 0;\n'
else:
sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
code += '} else {\n'
code += cond_code + '}'
code += 'FCSR = genCCVector(FCSR, CC, cond);\n'
iop = InstObjParams(name, Name, 'FPCompareOp', code)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def format FloatConvertOp(code, *flags) {{
import sys
#Determine Source Type
convert = 'fpConvert('
if '_sf' in code:
code = 'float ' + code + '\n'
convert += 'SINGLE_TO_'
elif '_df' in code:
code = 'double ' + code + '\n'
convert += 'DOUBLE_TO_'
elif '_sw' in code:
code = 'int32_t ' + code + '\n'
convert += 'WORD_TO_'
elif '_sd' in code:
code = 'int64_t ' + code + '\n'
convert += 'LONG_TO_'
else:
sys.exit("Error Determining Source Type for Conversion")
#Determine Destination Type
if 'ToSingle' in flags:
code += 'Fd_uw = ' + convert + 'SINGLE, '
elif 'ToDouble' in flags:
code += 'Fd_ud = ' + convert + 'DOUBLE, '
elif 'ToWord' in flags:
code += 'Fd_uw = ' + convert + 'WORD, '
elif 'ToLong' in flags:
code += 'Fd_ud = ' + convert + 'LONG, '
else:
sys.exit("Error Determining Destination Type for Conversion")
#Figure out how to round value
if 'Ceil' in flags:
code += 'ceil(val)); '
elif 'Floor' in flags:
code += 'floor(val)); '
elif 'Round' in flags:
code += 'roundFP(val, 0)); '
elif 'Trunc' in flags:
code += 'truncFP(val));'
else:
code += 'val); '
iop = InstObjParams(name, Name, 'FPOp', code)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def format FloatAccOp(code, *flags) {{
iop = InstObjParams(name, Name, 'FPOp', code, flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
// Primary format for float64 operate instructions:
def format Float64Op(code, *flags) {{
iop = InstObjParams(name, Name, 'MipsStaticInst', code, flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
def format FloatPSCompareOp(cond_code1, cond_code2, *flags) {{
import sys
code = 'bool cond1, cond2;\n'
code += 'bool code_block1, code_block2;\n'
code += 'code_block1 = code_block2 = true;\n'
if 'QnanException' in flags:
code += 'if (isQnan(&Fs1_sf, 32) || isQnan(&Ft1_sf, 32)) {\n'
code += '\tFCSR = genInvalidVector(FCSR);\n'
code += 'code_block1 = false;'
code += '}\n'
code += 'if (isQnan(&Fs2_sf, 32) || isQnan(&Ft2_sf, 32)) {\n'
code += '\tFCSR = genInvalidVector(FCSR);\n'
code += 'code_block2 = false;'
code += '}\n'
code += 'if (code_block1) {'
code += '\tif (isNan(&Fs1_sf, 32) || isNan(&Ft1_sf, 32)) {\n'
if 'UnorderedTrue' in flags:
code += 'cond1 = 1;\n'
elif 'UnorderedFalse' in flags:
code += 'cond1 = 0;\n'
else:
sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
code += '} else {\n'
code += cond_code1
code += 'FCSR = genCCVector(FCSR, CC, cond1);}\n}\n'
code += 'if (code_block2) {'
code += '\tif (isNan(&Fs2_sf, 32) || isNan(&Ft2_sf, 32)) {\n'
if 'UnorderedTrue' in flags:
code += 'cond2 = 1;\n'
elif 'UnorderedFalse' in flags:
code += 'cond2 = 0;\n'
else:
sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
code += '} else {\n'
code += cond_code2
code += 'FCSR = genCCVector(FCSR, CC, cond2);}\n}'
iop = InstObjParams(name, Name, 'FPCompareOp', code)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
|