1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
* Korey Sewell
*/
#include "arch/mips/isa_traits.hh"
#include "arch/mips/process.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "mem/page_table.hh"
#include "sim/process.hh"
#include "sim/process_impl.hh"
#include "sim/system.hh"
using namespace std;
using namespace MipsISA;
MipsLiveProcess::MipsLiveProcess(LiveProcessParams * params,
ObjectFile *objFile)
: LiveProcess(params, objFile)
{
// Set up stack. On MIPS, stack starts at the top of kuseg
// user address space. MIPS stack grows down from here
stack_base = 0x7FFFFFFF;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up break point (Top of Heap)
brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
brk_point = roundUp(brk_point, PageBytes);
// Set up region for mmaps. Start it 1GB above the top of the heap.
mmap_end = brk_point + 0x40000000L;
}
void
MipsLiveProcess::initState()
{
LiveProcess::initState();
argsInit<uint32_t>(PageBytes);
}
template<class IntType>
void
MipsLiveProcess::argsInit(int pageSize)
{
int intSize = sizeof(IntType);
// Patch the ld_bias for dynamic executables.
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
typedef AuxVector<IntType> auxv_t;
std::vector<auxv_t> auxv;
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject)
{
// Set the system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, MipsISA::PageBytes));
// Set the frequency at which time() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual
// address of the program header tables if they appear in the
// executable image.
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable());
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
// This is the base address of the ELF interpreter; it should be
// zero for static executables or contain the base address for
// dynamic executables.
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
}
// Calculate how much space we need for arg & env & auxv arrays.
int argv_array_size = intSize * (argv.size() + 1);
int envp_array_size = intSize * (envp.size() + 1);
int auxv_array_size = intSize * 2 * (auxv.size() + 1);
int arg_data_size = 0;
for (vector<string>::size_type i = 0; i < argv.size(); ++i) {
arg_data_size += argv[i].size() + 1;
}
int env_data_size = 0;
for (vector<string>::size_type i = 0; i < envp.size(); ++i) {
env_data_size += envp[i].size() + 1;
}
int space_needed =
argv_array_size +
envp_array_size +
auxv_array_size +
arg_data_size +
env_data_size;
// set bottom of stack
stack_min = stack_base - space_needed;
// align it
stack_min = roundDown(stack_min, pageSize);
stack_size = stack_base - stack_min;
// map memory
allocateMem(stack_min, roundUp(stack_size, pageSize));
// map out initial stack contents
IntType argv_array_base = stack_min + intSize; // room for argc
IntType envp_array_base = argv_array_base + argv_array_size;
IntType auxv_array_base = envp_array_base + envp_array_size;
IntType arg_data_base = auxv_array_base + auxv_array_size;
IntType env_data_base = arg_data_base + arg_data_size;
// write contents to stack
IntType argc = argv.size();
argc = htog((IntType)argc);
initVirtMem.writeBlob(stack_min, (uint8_t*)&argc, intSize);
copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
// Copy the aux vector
for (typename vector<auxv_t>::size_type x = 0; x < auxv.size(); x++) {
initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
(uint8_t*)&(auxv[x].a_type), intSize);
initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
(uint8_t*)&(auxv[x].a_val), intSize);
}
// Write out the terminating zeroed auxilliary vector
for (unsigned i = 0; i < 2; i++) {
const IntType zero = 0;
const Addr addr = auxv_array_base + 2 * intSize * (auxv.size() + i);
initVirtMem.writeBlob(addr, (uint8_t*)&zero, intSize);
}
ThreadContext *tc = system->getThreadContext(contextIds[0]);
setSyscallArg(tc, 0, argc);
setSyscallArg(tc, 1, argv_array_base);
tc->setIntReg(StackPointerReg, stack_min);
tc->pcState(getStartPC());
}
MipsISA::IntReg
MipsLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
assert(i < 6);
return tc->readIntReg(FirstArgumentReg + i++);
}
void
MipsLiveProcess::setSyscallArg(ThreadContext *tc,
int i, MipsISA::IntReg val)
{
assert(i < 6);
tc->setIntReg(FirstArgumentReg + i, val);
}
void
MipsLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (sysret.successful()) {
// no error
tc->setIntReg(SyscallSuccessReg, 0);
tc->setIntReg(ReturnValueReg, sysret.returnValue());
} else {
// got an error, return details
tc->setIntReg(SyscallSuccessReg, (IntReg) -1);
tc->setIntReg(ReturnValueReg, sysret.errnoValue());
}
}
|