1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
// -*- mode:c++ -*-
// Copyright (c) 2009 The University of Edinburgh
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Timothy M. Jones
////////////////////////////////////////////////////////////////////
//
// Floating Point operate instructions
//
let {{
readFPSCRCode = 'Fpscr fpscr = FPSCR;'
computeCR1Code = '''
Cr cr = CR;
cr.cr1 = (fpscr.fx << 3) | (fpscr.fex << 2) |
(fpscr.vx << 1) | fpscr.ox;
CR = cr;
'''
}};
// Primary format for floating point operate instructions:
def format FloatOp(code, inst_flags = []) {{
iop = InstObjParams(name, Name, 'FloatOp',
{"code": code},
inst_flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = BasicExecute.subst(iop)
}};
// Floating point operations that compute the CR1 code if RC is set. No other
// special registers are touched using these operations.
def format FloatRCCheckOp(code, inst_flags = []) {{
# Code when Rc is set
code_rc1 = code + readFPSCRCode + computeCR1Code
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'FloatOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'FloatOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
// Floating point elementary arithmetic operations. Besides having two
// versions of each instruction for when Rc is set or not, we also have
// to alter lots of special registers depending on the result of the
// operation. The result is always in Ft.sf.
def format FloatArithOp(code, inst_flags = []) {{
# Code when Rc is set
code_rc1 = code + readFPSCRCode + computeCR1Code
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'FloatOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'FloatOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
// Floating point rounding and conversion operations. Besides having two
// versions of each instruction for when Rc is set or not, we also have
// to alter lots of special registers depending on the result of the
// operation. The result is always in Ft.sf.
def format FloatConvertOp(code, inst_flags = []) {{
# Code when Rc is set
code_rc1 = code + readFPSCRCode + computeCR1Code
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'FloatOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'FloatOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
|