1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
// -*- mode:c++ -*-
// Copyright (c) 2009 The University of Edinburgh
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Timothy M. Jones
////////////////////////////////////////////////////////////////////
//
// Integer ALU instructions
//
// Instruction class constructor template when Rc is set.
def template IntRcConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
rcSet = true;
}
}};
// Instruction class constructor template when OE is set.
def template IntOeConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
oeSet = true;
}
}};
// Instruction class constructor template when both Rc and OE are set.
def template IntRcOeConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
rcSet = true;
oeSet = true;
}
}};
let {{
readXERCode = 'Xer xer = XER;'
setXERCode = 'XER = xer;'
computeCR0Code = '''
Cr cr = CR;
cr.cr0 = makeCRField((int32_t)%(result)s, (int32_t)0, xer.so);
CR = cr;
'''
computeCACode = '''
if (findCarry(32, %(result)s, %(inputa)s, %(inputb)s)) {
xer.ca = 1;
} else {
xer.ca = 0;
}
'''
computeOVCode = '''
if (findOverflow(32, %(result)s, %(inputa)s, %(inputb)s)) {
xer.ov = 1;
xer.so = 1;
} else {
xer.ov = 0;
}
'''
computeDivOVCode = '''
if (divSetOV) {
xer.ov = 1;
xer.so = 1;
} else {
if (findOverflow(32, %(result)s, %(inputa)s, %(inputb)s)) {
xer.ov = 1;
xer.so = 1;
} else {
xer.ov = 0;
}
}
'''
}};
// A basic integer instruction.
def format IntOp(code, inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntOp', code, inst_flags, BasicDecode,
BasicConstructor)
}};
// Integer instructions with immediate (signed or unsigned).
def format IntImmOp(code, inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
BasicConstructor)
}};
// Integer instructions with immediate that perform arithmetic.
// These instructions all write to Rt and use an altered form of the
// value in source register Ra, hence the use of src to hold the actual
// value. The control flags include the use of code to compute the
// carry bit or the CR0 code.
def format IntImmArithOp(code, ctrl_flags = [], inst_flags = []) {{
# Set up the dictionary and deal with control flags
dict = {'result':'Rt', 'inputa':'src', 'inputb':'imm'}
if ctrl_flags:
code += readXERCode
for val in ctrl_flags:
if val == 'computeCA':
code += computeCACode % dict + setXERCode
elif val == 'computeCR0':
code += computeCR0Code % dict
# Generate the class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
BasicConstructor)
}};
// Integer instructions with immediate that perform arithmetic but use
// the value 0 when Ra == 0. We generate two versions of each instruction
// corresponding to these two different scenarios. The correct version is
// determined at decode (see the CheckRaDecode template).
def format IntImmArithCheckRaOp(code, code_ra0, inst_flags = []) {{
# First the version where Ra is non-zero
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntImmOp', code, inst_flags,
CheckRaDecode, BasicConstructor)
# Now another version where Ra == 0
(header_output_ra0, decoder_output_ra0, _, exec_output_ra0) = \
GenAluOp(name, Name + 'RaZero', 'IntImmOp', code_ra0, inst_flags,
CheckRaDecode, BasicConstructor)
# Finally, add to the other outputs
header_output += header_output_ra0
decoder_output += decoder_output_ra0
exec_output += exec_output_ra0
}};
// Integer instructions with immediate that perform logic operations.
// All instructions write to Ra and use Rs as a source register. Some
// also compute the CR0 code too.
def format IntImmLogicOp(code, computeCR0 = 0, inst_flags = []) {{
# Set up the dictionary and deal with computing CR0
dict = {'result':'Ra'}
if computeCR0:
code += readXERCode + computeCR0Code % dict
# Generate the class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
BasicConstructor)
}};
// Integer instructions that perform logic operations. The result is
// always written into Ra. All instructions have 2 versions depending on
// whether the Rc bit is set to compute the CR0 code. This is determined
// at decode as before.
def format IntLogicOp(code, inst_flags = []) {{
dict = {'result':'Ra'}
# Code when Rc is set
code_rc1 = code + readXERCode + computeCR0Code % dict
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
// Integer instructions with a shift amount. As above, except inheriting
// from the IntShiftOp class.
def format IntShiftOp(code, inst_flags = []) {{
dict = {'result':'Ra'}
# Code when Rc is set
code_rc1 = code + readXERCode + computeCR0Code % dict
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntShiftOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'IntShiftOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
// Instructions in this format are all reduced to the form Rt = src1 + src2,
// therefore we just give src1 and src2 definitions. In working out the
// template we first put in the definitions of the variables and then
// the code for the addition. We also deal with computing the carry flag
// if required.
//
// We generate 4 versions of each instruction. This correspond to the
// different combinations of having the OE bit set or unset (which controls
// whether the overflow flag is computed) and the Rc bit set or unset too
// (which controls whether the CR0 code is computed).
def format IntSumOp(src1, src2, ca = {{ 0 }}, computeCA = 0,
inst_flags = []) {{
# The result is always in Rt, but the source values vary
dict = {'result':'Rt', 'inputa':'src1', 'inputb':'src2'}
# Add code to set up variables and do the sum
code = 'uint32_t src1 = ' + src1 + ';\n'
code += 'uint32_t src2 = ' + src2 + ';\n'
code += 'uint32_t ca = ' + ca + ';\n'
code += 'Rt = src1 + src2 + ca;\n'
# Add code for calculating the carry, if needed
if computeCA:
code += computeCACode % dict + setXERCode
# Setup the 4 code versions and add code to access XER if necessary
code_rc1 = readXERCode + code
code_oe1 = readXERCode + code + computeOVCode % dict + setXERCode
code_rc1_oe1 = readXERCode + code + computeOVCode % dict + setXERCode
if (computeCA or ca == 'xer.ca'):
code = readXERCode + code
code_rc1 += computeCR0Code % dict
code_rc1_oe1 += computeCR0Code % dict
# Generate the classes
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntOp', code, inst_flags,
CheckRcOeDecode, BasicConstructor)
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
CheckRcOeDecode, IntRcConstructor)
(header_output_oe1, decoder_output_oe1, _, exec_output_oe1) = \
GenAluOp(name, Name + 'OeSet', 'IntOp', code_oe1, inst_flags,
CheckRcOeDecode, IntOeConstructor)
(header_output_rc1_oe1, decoder_output_rc1_oe1, _, exec_output_rc1_oe1) = \
GenAluOp(name, Name + 'RcSetOeSet', 'IntOp', code_rc1_oe1,
inst_flags, CheckRcOeDecode, IntRcOeConstructor)
# Finally, add to the other outputs
header_output += \
header_output_rc1 + header_output_oe1 + header_output_rc1_oe1
decoder_output += \
decoder_output_rc1 + decoder_output_oe1 + decoder_output_rc1_oe1
exec_output += \
exec_output_rc1 + exec_output_oe1 + exec_output_rc1_oe1
}};
// Instructions that use source registers Ra and Rb, with the result
// placed into Rt. Basically multiply and divide instructions. The
// carry bit is never set, but overflow can be calculated. Division
// explicitly sets the overflow bit in certain situations and this is
// dealt with using the 'divSetOV' boolean in decoder.isa. We generate
// two versions of each instruction to deal with the Rc bit.
def format IntArithOp(code, computeOV = 0, inst_flags = []) {{
# The result is always in Rt, but the source values vary
dict = {'result':'Rt', 'inputa':'src1', 'inputb':'src2'}
# Deal with setting the overflow flag
if computeOV:
code = 'bool divSetOV = false;\n' + code
code += computeDivOVCode % dict + setXERCode
# Setup the 2 code versions and add code to access XER if necessary
code_rc1 = readXERCode + code + computeCR0Code % dict
if computeOV:
code = readXERCode + code
# Generate the classes
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
// A special format for rotate instructions which use certain fields
// from the instruction's binary encoding. We need two versions for each
// instruction to deal with the Rc bit.
def format IntRotateOp(code, inst_flags = []) {{
# The result is always in Ra
dict = {'result':'Ra'}
# Setup the code for when Rc is set
code_rc1 = readXERCode + code + computeCR0Code % dict
# Generate the first class
(header_output, decoder_output, decode_block, exec_output) = \
GenAluOp(name, Name, 'IntRotateOp', code, inst_flags,
CheckRcDecode, BasicConstructor)
# Generate the second class
(header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
GenAluOp(name, Name + 'RcSet', 'IntRotateOp', code_rc1, inst_flags,
CheckRcDecode, IntRcConstructor)
# Finally, add to the other outputs
header_output += header_output_rc1
decoder_output += decoder_output_rc1
exec_output += exec_output_rc1
}};
|