1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// Copyright (c) 2006 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Ali Saidi
// Gabe Black
// Steve Reinhardt
////////////////////////////////////////////////////////////////////
//
// Mem utility templates and functions
//
output header {{
/**
* Base class for memory operations.
*/
class Mem : public SparcStaticInst
{
protected:
// Constructor
Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
/**
* Class for memory operations which use an immediate offset.
*/
class MemImm : public Mem
{
protected:
// Constructor
MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
{}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
const int32_t imm;
};
}};
output decoder {{
std::string Mem::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
bool load = flags[IsLoad];
bool store = flags[IsStore];
printMnemonic(response, mnemonic);
if(store)
{
printReg(response, _srcRegIdx[0]);
ccprintf(response, ", ");
}
ccprintf(response, "[");
if(_srcRegIdx[!store ? 0 : 1] != 0)
{
printSrcReg(response, !store ? 0 : 1);
ccprintf(response, " + ");
}
printSrcReg(response, !store ? 1 : 2);
ccprintf(response, "]");
if(load)
{
ccprintf(response, ", ");
printReg(response, _destRegIdx[0]);
}
return response.str();
}
std::string MemImm::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream response;
bool load = flags[IsLoad];
bool save = flags[IsStore];
printMnemonic(response, mnemonic);
if(save)
{
printReg(response, _srcRegIdx[0]);
ccprintf(response, ", ");
}
ccprintf(response, "[");
if(_srcRegIdx[!save ? 0 : 1] != 0)
{
printReg(response, _srcRegIdx[!save ? 0 : 1]);
ccprintf(response, " + ");
}
if(imm >= 0)
ccprintf(response, "0x%x]", imm);
else
ccprintf(response, "-0x%x]", -imm);
if(load)
{
ccprintf(response, ", ");
printReg(response, _destRegIdx[0]);
}
return response.str();
}
}};
//This template provides the execute functions for a load
def template LoadExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
Addr EA;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "The address is 0x%x\n", EA);
%(fault_check)s;
if(fault == NoFault)
{
fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
}
if(fault == NoFault)
{
%(code)s;
}
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return fault;
}
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
Addr EA;
uint%(mem_acc_size)s_t Mem;
%(ea_decl)s;
%(ea_rd)s;
%(ea_code)s;
%(fault_check)s;
if(fault == NoFault)
{
fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
}
return fault;
}
Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
%(code_decl)s;
%(code_rd)s;
Mem = pkt->get<typeof(Mem)>();
%(code)s;
if(fault == NoFault)
{
%(code_wb)s;
}
return fault;
}
}};
//This template provides the execute functions for a store
def template StoreExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
//This is to support the conditional store in cas instructions.
//It should be optomized out in all the others
bool storeCond = true;
Addr EA;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "The address is 0x%x\n", EA);
%(fault_check)s;
if(fault == NoFault)
{
%(code)s;
}
if(storeCond && fault == NoFault)
{
fault = xc->write((uint%(mem_acc_size)s_t)Mem,
EA, %(asi_val)s, 0);
}
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return fault;
}
Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
Fault fault = NoFault;
bool storeCond = true;
Addr EA;
%(op_decl)s;
%(op_rd)s;
%(ea_code)s;
DPRINTF(Sparc, "The address is 0x%x\n", EA);
%(fault_check)s;
if(fault == NoFault)
{
%(code)s;
}
if(storeCond && fault == NoFault)
{
fault = xc->write((uint%(mem_acc_size)s_t)Mem,
EA, %(asi_val)s, 0);
}
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return fault;
}
Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
Trace::InstRecord * traceData) const
{
return NoFault;
}
}};
//This delcares the initiateAcc function in memory operations
def template InitiateAccDeclare {{
Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
//This declares the completeAcc function in memory operations
def template CompleteAccDeclare {{
Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
}};
//Here are some code snippets which check for various fault conditions
let {{
# The LSB can be zero, since it's really the MSB in doubles and quads
# and we're dealing with doubles
BlockAlignmentFaultCheck = '''
if(RD & 0xe)
fault = new IllegalInstruction;
else if(EA & 0x3f)
fault = new MemAddressNotAligned;
'''
TwinAlignmentFaultCheck = '''
if(RD & 0xe)
fault = new IllegalInstruction;
else if(EA & 0x1f)
fault = new MemAddressNotAligned;
'''
# XXX Need to take care of pstate.hpriv as well. The lower ASIs
# are split into ones that are available in priv and hpriv, and
# those that are only available in hpriv
AlternateASIPrivFaultCheck = '''
if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
!bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
fault = new PrivilegedAction;
else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
fault = new PrivilegedAction;
'''
}};
//A simple function to generate the name of the macro op of a certain
//instruction at a certain micropc
let {{
def makeMicroName(name, microPc):
return name + "::" + name + "_" + str(microPc)
}};
//This function properly generates the execute functions for one of the
//templates above. This is needed because in one case, ea computation,
//fault checks and the actual code all occur in the same function,
//and in the other they're distributed across two. Also note that for
//execute functions, the name of the base class doesn't matter.
let {{
def doSplitExecute(code, execute, name, Name, asi, opt_flags, microParam):
microParam["asi_val"] = asi;
codeParam = microParam.copy()
codeParam["ea_code"] = ''
codeIop = InstObjParams(name, Name, '', code, opt_flags, codeParam)
eaIop = InstObjParams(name, Name, '', microParam["ea_code"],
opt_flags, microParam)
iop = InstObjParams(name, Name, '', code, opt_flags, microParam)
(iop.ea_decl,
iop.ea_rd,
iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
(iop.code_decl,
iop.code_rd,
iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
return execute.subst(iop)
def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
executeCode = ''
for (eaCode, name, Name) in (
(eaRegCode, nameReg, NameReg),
(eaImmCode, nameImm, NameImm)):
microParams = {"ea_code" : eaCode, "fault_check": faultCode}
executeCode += doSplitExecute(code, execute, name, Name,
asi, opt_flags, microParams)
return executeCode
}};
|