summaryrefslogtreecommitdiff
path: root/src/arch/sparc/process.cc
blob: 6659a04fab615a55581e01753b9172c2fded1b66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 * Copyright (c) 2003-2004 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 *          Ali Saidi
 */

#include "arch/sparc/process.hh"

#include "arch/sparc/asi.hh"
#include "arch/sparc/handlers.hh"
#include "arch/sparc/isa_traits.hh"
#include "arch/sparc/registers.hh"
#include "arch/sparc/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/logging.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/page_table.hh"
#include "params/Process.hh"
#include "sim/aux_vector.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"

using namespace std;
using namespace SparcISA;

static const int FirstArgumentReg = 8;


SparcProcess::SparcProcess(ProcessParams *params, ObjectFile *objFile,
                           Addr _StackBias)
    : Process(params,
              new EmulationPageTable(params->name, params->pid, PageBytes),
              objFile),
      StackBias(_StackBias)
{
    fatal_if(params->useArchPT, "Arch page tables not implemented.");
    // Initialize these to 0s
    fillStart = 0;
    spillStart = 0;
}

void
SparcProcess::handleTrap(int trapNum, ThreadContext *tc, Fault *fault)
{
    PCState pc = tc->pcState();
    switch (trapNum) {
      case 0x01: // Software breakpoint
        warn("Software breakpoint encountered at pc %#x.\n", pc.pc());
        break;
      case 0x02: // Division by zero
        warn("Software signaled a division by zero at pc %#x.\n", pc.pc());
        break;
      case 0x03: // Flush window trap
        flushWindows(tc);
        break;
      case 0x04: // Clean windows
        warn("Ignoring process request for clean register "
                "windows at pc %#x.\n", pc.pc());
        break;
      case 0x05: // Range check
        warn("Software signaled a range check at pc %#x.\n", pc.pc());
        break;
      case 0x06: // Fix alignment
        warn("Ignoring process request for os assisted unaligned accesses "
                "at pc %#x.\n", pc.pc());
        break;
      case 0x07: // Integer overflow
        warn("Software signaled an integer overflow at pc %#x.\n", pc.pc());
        break;
      case 0x32: // Get integer condition codes
        warn("Ignoring process request to get the integer condition codes "
                "at pc %#x.\n", pc.pc());
        break;
      case 0x33: // Set integer condition codes
        warn("Ignoring process request to set the integer condition codes "
                "at pc %#x.\n", pc.pc());
        break;
      default:
        panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
    }
}

void
SparcProcess::initState()
{
    Process::initState();

    ThreadContext *tc = system->getThreadContext(contextIds[0]);
    // From the SPARC ABI

    // Setup default FP state
    tc->setMiscRegNoEffect(MISCREG_FSR, 0);

    tc->setMiscRegNoEffect(MISCREG_TICK, 0);

    /*
     * Register window management registers
     */

    // No windows contain info from other programs
    // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
    tc->setIntReg(NumIntArchRegs + 6, 0);
    // There are no windows to pop
    // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
    tc->setIntReg(NumIntArchRegs + 4, 0);
    // All windows are available to save into
    // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
    tc->setIntReg(NumIntArchRegs + 3, NWindows - 2);
    // All windows are "clean"
    // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
    tc->setIntReg(NumIntArchRegs + 5, NWindows);
    // Start with register window 0
    tc->setMiscReg(MISCREG_CWP, 0);
    // Always use spill and fill traps 0
    // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0);
    tc->setIntReg(NumIntArchRegs + 7, 0);
    // Set the trap level to 0
    tc->setMiscRegNoEffect(MISCREG_TL, 0);
    // Set the ASI register to something fixed
    tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY);

    // Set the MMU Primary Context Register to hold the process' pid
    tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid);

    /*
     * T1 specific registers
     */
    // Turn on the icache, dcache, dtb translation, and itb translation.
    tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15);
}

void
Sparc32Process::initState()
{
    SparcProcess::initState();

    ThreadContext *tc = system->getThreadContext(contextIds[0]);
    // The process runs in user mode with 32 bit addresses
    PSTATE pstate = 0;
    pstate.ie = 1;
    pstate.am = 1;
    tc->setMiscReg(MISCREG_PSTATE, pstate);

    argsInit(32 / 8, PageBytes);
}

void
Sparc64Process::initState()
{
    SparcProcess::initState();

    ThreadContext *tc = system->getThreadContext(contextIds[0]);
    // The process runs in user mode
    PSTATE pstate = 0;
    pstate.ie = 1;
    tc->setMiscReg(MISCREG_PSTATE, pstate);

    argsInit(sizeof(RegVal), PageBytes);
}

template<class IntType>
void
SparcProcess::argsInit(int pageSize)
{
    int intSize = sizeof(IntType);

    typedef AuxVector<IntType> auxv_t;

    std::vector<auxv_t> auxv;

    string filename;
    if (argv.size() < 1)
        filename = "";
    else
        filename = argv[0];

    // Even for a 32 bit process, the ABI says we still need to
    // maintain double word alignment of the stack pointer.
    uint64_t align = 16;

    // Patch the ld_bias for dynamic executables.
    updateBias();

    // load object file into target memory
    objFile->loadSections(initVirtMem);

    enum hardwareCaps
    {
        M5_HWCAP_SPARC_FLUSH = 1,
        M5_HWCAP_SPARC_STBAR = 2,
        M5_HWCAP_SPARC_SWAP = 4,
        M5_HWCAP_SPARC_MULDIV = 8,
        M5_HWCAP_SPARC_V9 = 16,
        // This one should technically only be set
        // if there is a cheetah or cheetah_plus tlb,
        // but we'll use it all the time
        M5_HWCAP_SPARC_ULTRA3 = 32
    };

    const int64_t hwcap =
        M5_HWCAP_SPARC_FLUSH |
        M5_HWCAP_SPARC_STBAR |
        M5_HWCAP_SPARC_SWAP |
        M5_HWCAP_SPARC_MULDIV |
        M5_HWCAP_SPARC_V9 |
        M5_HWCAP_SPARC_ULTRA3;

    // Setup the auxilliary vectors. These will already have endian conversion.
    // Auxilliary vectors are loaded only for elf formatted executables.
    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
    if (elfObject) {
        // Bits which describe the system hardware capabilities
        auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
        // The system page size
        auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes));
        // Defined to be 100 in the kernel source.
        // Frequency at which times() increments
        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
        // For statically linked executables, this is the virtual address of the
        // program header tables if they appear in the executable image
        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
        // This is the size of a program header entry from the elf file.
        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
        // This is the number of program headers from the original elf file.
        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
        // This is the base address of the ELF interpreter; it should be
        // zero for static executables or contain the base address for
        // dynamic executables.
        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
        // This is hardwired to 0 in the elf loading code in the kernel
        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
        // The entry point to the program
        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
        // Different user and group IDs
        auxv.push_back(auxv_t(M5_AT_UID, uid()));
        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
        auxv.push_back(auxv_t(M5_AT_GID, gid()));
        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
        // Whether to enable "secure mode" in the executable
        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
    }

    // Figure out how big the initial stack needs to be

    // The unaccounted for 8 byte 0 at the top of the stack
    int sentry_size = 8;

    // This is the name of the file which is present on the initial stack
    // It's purpose is to let the user space linker examine the original file.
    int file_name_size = filename.size() + 1;

    int env_data_size = 0;
    for (int i = 0; i < envp.size(); ++i) {
        env_data_size += envp[i].size() + 1;
    }
    int arg_data_size = 0;
    for (int i = 0; i < argv.size(); ++i) {
        arg_data_size += argv[i].size() + 1;
    }

    // The info_block.
    int base_info_block_size =
        sentry_size + file_name_size + env_data_size + arg_data_size;

    int info_block_size = roundUp(base_info_block_size, align);

    int info_block_padding = info_block_size - base_info_block_size;

    // Each auxilliary vector is two words
    int aux_array_size = intSize * 2 * (auxv.size() + 1);

    int envp_array_size = intSize * (envp.size() + 1);
    int argv_array_size = intSize * (argv.size() + 1);

    int argc_size = intSize;
    int window_save_size = intSize * 16;

    // Figure out the size of the contents of the actual initial frame
    int frame_size =
        aux_array_size +
        envp_array_size +
        argv_array_size +
        argc_size +
        window_save_size;

    // There needs to be padding after the auxiliary vector data so that the
    // very bottom of the stack is aligned properly.
    int aligned_partial_size = roundUp(frame_size, align);
    int aux_padding = aligned_partial_size - frame_size;

    int space_needed =
        info_block_size +
        aux_padding +
        frame_size;

    memState->setStackMin(memState->getStackBase() - space_needed);
    memState->setStackMin(roundDown(memState->getStackMin(), align));
    memState->setStackSize(memState->getStackBase() - memState->getStackMin());

    // Allocate space for the stack
    allocateMem(roundDown(memState->getStackMin(), pageSize),
                roundUp(memState->getStackSize(), pageSize));

    // map out initial stack contents
    IntType sentry_base = memState->getStackBase() - sentry_size;
    IntType file_name_base = sentry_base - file_name_size;
    IntType env_data_base = file_name_base - env_data_size;
    IntType arg_data_base = env_data_base - arg_data_size;
    IntType auxv_array_base = arg_data_base -
        info_block_padding - aux_array_size - aux_padding;
    IntType envp_array_base = auxv_array_base - envp_array_size;
    IntType argv_array_base = envp_array_base - argv_array_size;
    IntType argc_base = argv_array_base - argc_size;
#if TRACING_ON
    IntType window_save_base = argc_base - window_save_size;
#endif

    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
    DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base);
    DPRINTF(Stack, "filename = %s\n", filename);
    DPRINTF(Stack, "%#x - file name\n", file_name_base);
    DPRINTF(Stack, "%#x - env data\n", env_data_base);
    DPRINTF(Stack, "%#x - arg data\n", arg_data_base);
    DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base);
    DPRINTF(Stack, "%#x - envp array\n", envp_array_base);
    DPRINTF(Stack, "%#x - argv array\n", argv_array_base);
    DPRINTF(Stack, "%#x - argc \n", argc_base);
    DPRINTF(Stack, "%#x - window save\n", window_save_base);
    DPRINTF(Stack, "%#x - stack min\n", memState->getStackMin());

    assert(window_save_base == memState->getStackMin());

    // write contents to stack

    // figure out argc
    IntType argc = argv.size();
    IntType guestArgc = SparcISA::htog(argc);

    // Write out the sentry void *
    uint64_t sentry_NULL = 0;
    initVirtMem.writeBlob(sentry_base,
            (uint8_t*)&sentry_NULL, sentry_size);

    // Write the file name
    initVirtMem.writeString(file_name_base, filename.c_str());

    // Copy the aux stuff
    for (int x = 0; x < auxv.size(); x++) {
        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
                (uint8_t*)&(auxv[x].getAuxType()), intSize);
        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
                (uint8_t*)&(auxv[x].getAuxVal()), intSize);
    }

    // Write out the terminating zeroed auxilliary vector
    const IntType zero = 0;
    initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(),
            (uint8_t*)&zero, intSize);
    initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1),
            (uint8_t*)&zero, intSize);

    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);

    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);

    // Set up space for the trap handlers into the processes address space.
    // Since the stack grows down and there is reserved address space abov
    // it, we can put stuff above it and stay out of the way.
    fillStart = memState->getStackBase();
    spillStart = fillStart + sizeof(MachInst) * numFillInsts;

    ThreadContext *tc = system->getThreadContext(contextIds[0]);
    // Set up the thread context to start running the process
    // assert(NumArgumentRegs >= 2);
    // tc->setIntReg(ArgumentReg[0], argc);
    // tc->setIntReg(ArgumentReg[1], argv_array_base);
    tc->setIntReg(StackPointerReg, memState->getStackMin() - StackBias);

    // %g1 is a pointer to a function that should be run at exit. Since we
    // don't have anything like that, it should be set to 0.
    tc->setIntReg(1, 0);

    tc->pcState(getStartPC());

    // Align the "stack_min" to a page boundary.
    memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
}

void
Sparc64Process::argsInit(int intSize, int pageSize)
{
    SparcProcess::argsInit<uint64_t>(pageSize);

    // Stuff the trap handlers into the process address space
    initVirtMem.writeBlob(fillStart,
            (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts);
    initVirtMem.writeBlob(spillStart,
            (uint8_t*)spillHandler64, sizeof(MachInst) *  numSpillInsts);
}

void
Sparc32Process::argsInit(int intSize, int pageSize)
{
    SparcProcess::argsInit<uint32_t>(pageSize);

    // Stuff the trap handlers into the process address space
    initVirtMem.writeBlob(fillStart,
            (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts);
    initVirtMem.writeBlob(spillStart,
            (uint8_t*)spillHandler32, sizeof(MachInst) *  numSpillInsts);
}

void Sparc32Process::flushWindows(ThreadContext *tc)
{
    RegVal Cansave = tc->readIntReg(NumIntArchRegs + 3);
    RegVal Canrestore = tc->readIntReg(NumIntArchRegs + 4);
    RegVal Otherwin = tc->readIntReg(NumIntArchRegs + 6);
    RegVal CWP = tc->readMiscReg(MISCREG_CWP);
    RegVal origCWP = CWP;
    CWP = (CWP + Cansave + 2) % NWindows;
    while (NWindows - 2 - Cansave != 0) {
        if (Otherwin) {
            panic("Otherwin non-zero.\n");
        } else {
            tc->setMiscReg(MISCREG_CWP, CWP);
            // Do the stores
            RegVal sp = tc->readIntReg(StackPointerReg);
            for (int index = 16; index < 32; index++) {
                uint32_t regVal = tc->readIntReg(index);
                regVal = htog(regVal);
                if (!tc->getMemProxy().tryWriteBlob(
                        sp + (index - 16) * 4, (uint8_t *)&regVal, 4)) {
                    warn("Failed to save register to the stack when "
                            "flushing windows.\n");
                }
            }
            Canrestore--;
            Cansave++;
            CWP = (CWP + 1) % NWindows;
        }
    }
    tc->setIntReg(NumIntArchRegs + 3, Cansave);
    tc->setIntReg(NumIntArchRegs + 4, Canrestore);
    tc->setMiscReg(MISCREG_CWP, origCWP);
}

void
Sparc64Process::flushWindows(ThreadContext *tc)
{
    RegVal Cansave = tc->readIntReg(NumIntArchRegs + 3);
    RegVal Canrestore = tc->readIntReg(NumIntArchRegs + 4);
    RegVal Otherwin = tc->readIntReg(NumIntArchRegs + 6);
    RegVal CWP = tc->readMiscReg(MISCREG_CWP);
    RegVal origCWP = CWP;
    CWP = (CWP + Cansave + 2) % NWindows;
    while (NWindows - 2 - Cansave != 0) {
        if (Otherwin) {
            panic("Otherwin non-zero.\n");
        } else {
            tc->setMiscReg(MISCREG_CWP, CWP);
            // Do the stores
            RegVal sp = tc->readIntReg(StackPointerReg);
            for (int index = 16; index < 32; index++) {
                RegVal regVal = tc->readIntReg(index);
                regVal = htog(regVal);
                if (!tc->getMemProxy().tryWriteBlob(
                        sp + 2047 + (index - 16) * 8, (uint8_t *)&regVal, 8)) {
                    warn("Failed to save register to the stack when "
                            "flushing windows.\n");
                }
            }
            Canrestore--;
            Cansave++;
            CWP = (CWP + 1) % NWindows;
        }
    }
    tc->setIntReg(NumIntArchRegs + 3, Cansave);
    tc->setIntReg(NumIntArchRegs + 4, Canrestore);
    tc->setMiscReg(MISCREG_CWP, origCWP);
}

RegVal
Sparc32Process::getSyscallArg(ThreadContext *tc, int &i)
{
    assert(i < 6);
    return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0);
}

void
Sparc32Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
{
    assert(i < 6);
    tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0));
}

RegVal
Sparc64Process::getSyscallArg(ThreadContext *tc, int &i)
{
    assert(i < 6);
    return tc->readIntReg(FirstArgumentReg + i++);
}

void
Sparc64Process::setSyscallArg(ThreadContext *tc, int i, RegVal val)
{
    assert(i < 6);
    tc->setIntReg(FirstArgumentReg + i, val);
}

void
SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
    // check for error condition.  SPARC syscall convention is to
    // indicate success/failure in reg the carry bit of the ccr
    // and put the return value itself in the standard return value reg ().
    PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
    if (sysret.successful()) {
        // no error, clear XCC.C
        tc->setIntReg(NumIntArchRegs + 2,
                      tc->readIntReg(NumIntArchRegs + 2) & 0xEE);
        RegVal val = sysret.returnValue();
        if (pstate.am)
            val = bits(val, 31, 0);
        tc->setIntReg(ReturnValueReg, val);
    } else {
        // got an error, set XCC.C
        tc->setIntReg(NumIntArchRegs + 2,
                      tc->readIntReg(NumIntArchRegs + 2) | 0x11);
        RegVal val = sysret.errnoValue();
        if (pstate.am)
            val = bits(val, 31, 0);
        tc->setIntReg(ReturnValueReg, val);
    }
}