1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/*
* Copyright (c) 2012 Google
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __ARCH_X86_DECODER_HH__
#define __ARCH_X86_DECODER_HH__
#include <cassert>
#include <unordered_map>
#include <vector>
#include "arch/x86/regs/misc.hh"
#include "arch/x86/types.hh"
#include "base/bitfield.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "cpu/decode_cache.hh"
#include "cpu/static_inst.hh"
#include "debug/Decoder.hh"
namespace X86ISA
{
class ISA;
class Decoder
{
private:
//These are defined and documented in decoder_tables.cc
static const uint8_t SizeTypeToSize[3][10];
typedef const uint8_t ByteTable[256];
static ByteTable Prefixes;
static ByteTable UsesModRMOneByte;
static ByteTable UsesModRMTwoByte;
static ByteTable UsesModRMThreeByte0F38;
static ByteTable UsesModRMThreeByte0F3A;
static ByteTable ImmediateTypeOneByte;
static ByteTable ImmediateTypeTwoByte;
static ByteTable ImmediateTypeThreeByte0F38;
static ByteTable ImmediateTypeThreeByte0F3A;
static ByteTable ImmediateTypeVex[10];
protected:
struct InstBytes
{
StaticInstPtr si;
std::vector<MachInst> chunks;
std::vector<MachInst> masks;
int lastOffset;
InstBytes() : lastOffset(0)
{}
};
static InstBytes dummy;
//The bytes to be predecoded
MachInst fetchChunk;
InstBytes *instBytes;
int chunkIdx;
//The pc of the start of fetchChunk
Addr basePC;
//The pc the current instruction started at
Addr origPC;
//The offset into fetchChunk of current processing
int offset;
//The extended machine instruction being generated
ExtMachInst emi;
//Predecoding state
X86Mode mode;
X86SubMode submode;
uint8_t altOp;
uint8_t defOp;
uint8_t altAddr;
uint8_t defAddr;
uint8_t stack;
uint8_t getNextByte()
{
return ((uint8_t *)&fetchChunk)[offset];
}
void getImmediate(int &collected, uint64_t ¤t, int size)
{
//Figure out how many bytes we still need to get for the
//immediate.
int toGet = size - collected;
//Figure out how many bytes are left in our "buffer"
int remaining = sizeof(MachInst) - offset;
//Get as much as we need, up to the amount available.
toGet = toGet > remaining ? remaining : toGet;
//Shift the bytes we want to be all the way to the right
uint64_t partialImm = fetchChunk >> (offset * 8);
//Mask off what we don't want
partialImm &= mask(toGet * 8);
//Shift it over to overlay with our displacement.
partialImm <<= (immediateCollected * 8);
//Put it into our displacement
current |= partialImm;
//Update how many bytes we've collected.
collected += toGet;
consumeBytes(toGet);
}
void updateOffsetState()
{
assert(offset <= sizeof(MachInst));
if (offset == sizeof(MachInst)) {
DPRINTF(Decoder, "At the end of a chunk, idx = %d, chunks = %d.\n",
chunkIdx, instBytes->chunks.size());
chunkIdx++;
if (chunkIdx == instBytes->chunks.size()) {
outOfBytes = true;
} else {
offset = 0;
fetchChunk = instBytes->chunks[chunkIdx];
basePC += sizeof(MachInst);
}
}
}
void consumeByte()
{
offset++;
updateOffsetState();
}
void consumeBytes(int numBytes)
{
offset += numBytes;
updateOffsetState();
}
//State machine state
protected:
//Whether or not we're out of bytes
bool outOfBytes;
//Whether we've completed generating an ExtMachInst
bool instDone;
//The size of the displacement value
int displacementSize;
//The size of the immediate value
int immediateSize;
//This is how much of any immediate value we've gotten. This is used
//for both the actual immediate and the displacement.
int immediateCollected;
enum State {
ResetState,
FromCacheState,
PrefixState,
TwoByteVexState,
ThreeByteVexFirstState,
ThreeByteVexSecondState,
OneByteOpcodeState,
TwoByteOpcodeState,
ThreeByte0F38OpcodeState,
ThreeByte0F3AOpcodeState,
ModRMState,
SIBState,
DisplacementState,
ImmediateState,
//We should never get to this state. Getting here is an error.
ErrorState
};
State state;
//Functions to handle each of the states
State doResetState();
State doFromCacheState();
State doPrefixState(uint8_t);
State doTwoByteVexState(uint8_t);
State doThreeByteVexFirstState(uint8_t);
State doThreeByteVexSecondState(uint8_t);
State doOneByteOpcodeState(uint8_t);
State doTwoByteOpcodeState(uint8_t);
State doThreeByte0F38OpcodeState(uint8_t);
State doThreeByte0F3AOpcodeState(uint8_t);
State doModRMState(uint8_t);
State doSIBState(uint8_t);
State doDisplacementState();
State doImmediateState();
//Process the actual opcode found earlier, using the supplied tables.
State processOpcode(ByteTable &immTable, ByteTable &modrmTable,
bool addrSizedImm = false);
// Process the opcode found with VEX / XOP prefix.
State processExtendedOpcode(ByteTable &immTable);
protected:
/// Caching for decoded instruction objects.
typedef MiscReg CacheKey;
typedef DecodeCache::AddrMap<Decoder::InstBytes> DecodePages;
DecodePages *decodePages;
typedef std::unordered_map<CacheKey, DecodePages *> AddrCacheMap;
AddrCacheMap addrCacheMap;
DecodeCache::InstMap *instMap;
typedef std::unordered_map<CacheKey, DecodeCache::InstMap *> InstCacheMap;
static InstCacheMap instCacheMap;
public:
Decoder(ISA* isa = nullptr) : basePC(0), origPC(0), offset(0),
outOfBytes(true), instDone(false),
state(ResetState)
{
memset(&emi, 0, sizeof(emi));
mode = LongMode;
submode = SixtyFourBitMode;
emi.mode.mode = mode;
emi.mode.submode = submode;
altOp = 0;
defOp = 0;
altAddr = 0;
defAddr = 0;
stack = 0;
instBytes = &dummy;
decodePages = NULL;
instMap = NULL;
}
void setM5Reg(HandyM5Reg m5Reg)
{
mode = (X86Mode)(uint64_t)m5Reg.mode;
submode = (X86SubMode)(uint64_t)m5Reg.submode;
emi.mode.mode = mode;
emi.mode.submode = submode;
altOp = m5Reg.altOp;
defOp = m5Reg.defOp;
altAddr = m5Reg.altAddr;
defAddr = m5Reg.defAddr;
stack = m5Reg.stack;
AddrCacheMap::iterator amIter = addrCacheMap.find(m5Reg);
if (amIter != addrCacheMap.end()) {
decodePages = amIter->second;
} else {
decodePages = new DecodePages;
addrCacheMap[m5Reg] = decodePages;
}
InstCacheMap::iterator imIter = instCacheMap.find(m5Reg);
if (imIter != instCacheMap.end()) {
instMap = imIter->second;
} else {
instMap = new DecodeCache::InstMap;
instCacheMap[m5Reg] = instMap;
}
}
void takeOverFrom(Decoder *old)
{
mode = old->mode;
submode = old->submode;
emi.mode.mode = mode;
emi.mode.submode = submode;
altOp = old->altOp;
defOp = old->defOp;
altAddr = old->altAddr;
defAddr = old->defAddr;
stack = old->stack;
}
void reset()
{
state = ResetState;
}
void process();
//Use this to give data to the decoder. This should be used
//when there is control flow.
void moreBytes(const PCState &pc, Addr fetchPC, MachInst data)
{
DPRINTF(Decoder, "Getting more bytes.\n");
basePC = fetchPC;
offset = (fetchPC >= pc.instAddr()) ? 0 : pc.instAddr() - fetchPC;
fetchChunk = data;
outOfBytes = false;
process();
}
bool needMoreBytes()
{
return outOfBytes;
}
bool instReady()
{
return instDone;
}
void
updateNPC(X86ISA::PCState &nextPC)
{
if (!nextPC.size()) {
int size = basePC + offset - origPC;
DPRINTF(Decoder,
"Calculating the instruction size: "
"basePC: %#x offset: %#x origPC: %#x size: %d\n",
basePC, offset, origPC, size);
nextPC.size(size);
nextPC.npc(nextPC.pc() + size);
}
}
public:
StaticInstPtr decodeInst(ExtMachInst mach_inst);
/// Decode a machine instruction.
/// @param mach_inst The binary instruction to decode.
/// @retval A pointer to the corresponding StaticInst object.
StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
StaticInstPtr decode(X86ISA::PCState &nextPC);
};
} // namespace X86ISA
#endif // __ARCH_X86_DECODER_HH__
|