summaryrefslogtreecommitdiff
path: root/src/arch/x86/interrupts.cc
blob: 8ba1819482c3d6ddcebe502d648d7008fa5a09b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/*
 * Copyright (c) 2012-2013 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2008 The Hewlett-Packard Development Company
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 */

#include "arch/x86/interrupts.hh"

#include <memory>

#include "arch/x86/intmessage.hh"
#include "arch/x86/regs/apic.hh"
#include "cpu/base.hh"
#include "debug/LocalApic.hh"
#include "dev/x86/i82094aa.hh"
#include "dev/x86/pc.hh"
#include "dev/x86/south_bridge.hh"
#include "mem/packet_access.hh"
#include "sim/full_system.hh"
#include "sim/system.hh"

int
divideFromConf(uint32_t conf)
{
    // This figures out what division we want from the division configuration
    // register in the local APIC. The encoding is a little odd but it can
    // be deciphered fairly easily.
    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
    shift = (shift + 1) % 8;
    return 1 << shift;
}

namespace X86ISA
{

ApicRegIndex
decodeAddr(Addr paddr)
{
    ApicRegIndex regNum;
    paddr &= ~mask(3);
    switch (paddr)
    {
      case 0x20:
        regNum = APIC_ID;
        break;
      case 0x30:
        regNum = APIC_VERSION;
        break;
      case 0x80:
        regNum = APIC_TASK_PRIORITY;
        break;
      case 0x90:
        regNum = APIC_ARBITRATION_PRIORITY;
        break;
      case 0xA0:
        regNum = APIC_PROCESSOR_PRIORITY;
        break;
      case 0xB0:
        regNum = APIC_EOI;
        break;
      case 0xD0:
        regNum = APIC_LOGICAL_DESTINATION;
        break;
      case 0xE0:
        regNum = APIC_DESTINATION_FORMAT;
        break;
      case 0xF0:
        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
        break;
      case 0x100:
      case 0x110:
      case 0x120:
      case 0x130:
      case 0x140:
      case 0x150:
      case 0x160:
      case 0x170:
        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x10);
        break;
      case 0x180:
      case 0x190:
      case 0x1A0:
      case 0x1B0:
      case 0x1C0:
      case 0x1D0:
      case 0x1E0:
      case 0x1F0:
        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x10);
        break;
      case 0x200:
      case 0x210:
      case 0x220:
      case 0x230:
      case 0x240:
      case 0x250:
      case 0x260:
      case 0x270:
        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x10);
        break;
      case 0x280:
        regNum = APIC_ERROR_STATUS;
        break;
      case 0x300:
        regNum = APIC_INTERRUPT_COMMAND_LOW;
        break;
      case 0x310:
        regNum = APIC_INTERRUPT_COMMAND_HIGH;
        break;
      case 0x320:
        regNum = APIC_LVT_TIMER;
        break;
      case 0x330:
        regNum = APIC_LVT_THERMAL_SENSOR;
        break;
      case 0x340:
        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
        break;
      case 0x350:
        regNum = APIC_LVT_LINT0;
        break;
      case 0x360:
        regNum = APIC_LVT_LINT1;
        break;
      case 0x370:
        regNum = APIC_LVT_ERROR;
        break;
      case 0x380:
        regNum = APIC_INITIAL_COUNT;
        break;
      case 0x390:
        regNum = APIC_CURRENT_COUNT;
        break;
      case 0x3E0:
        regNum = APIC_DIVIDE_CONFIGURATION;
        break;
      default:
        // A reserved register field.
        panic("Accessed reserved register field %#x.\n", paddr);
        break;
    }
    return regNum;
}
}

Tick
X86ISA::Interrupts::read(PacketPtr pkt)
{
    Addr offset = pkt->getAddr() - pioAddr;
    //Make sure we're at least only accessing one register.
    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
        panic("Accessed more than one register at a time in the APIC!\n");
    ApicRegIndex reg = decodeAddr(offset);
    uint32_t val = htog(readReg(reg));
    DPRINTF(LocalApic,
            "Reading Local APIC register %d at offset %#x as %#x.\n",
            reg, offset, val);
    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
    pkt->makeAtomicResponse();
    return pioDelay;
}

Tick
X86ISA::Interrupts::write(PacketPtr pkt)
{
    Addr offset = pkt->getAddr() - pioAddr;
    //Make sure we're at least only accessing one register.
    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
        panic("Accessed more than one register at a time in the APIC!\n");
    ApicRegIndex reg = decodeAddr(offset);
    uint32_t val = regs[reg];
    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
    DPRINTF(LocalApic,
            "Writing Local APIC register %d at offset %#x as %#x.\n",
            reg, offset, gtoh(val));
    setReg(reg, gtoh(val));
    pkt->makeAtomicResponse();
    return pioDelay;
}
void
X86ISA::Interrupts::requestInterrupt(uint8_t vector,
        uint8_t deliveryMode, bool level)
{
    /*
     * Fixed and lowest-priority delivery mode interrupts are handled
     * using the IRR/ISR registers, checking against the TPR, etc.
     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
     */
    if (deliveryMode == DeliveryMode::Fixed ||
            deliveryMode == DeliveryMode::LowestPriority) {
        DPRINTF(LocalApic, "Interrupt is an %s.\n",
                DeliveryMode::names[deliveryMode]);
        // Queue up the interrupt in the IRR.
        if (vector > IRRV)
            IRRV = vector;
        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
            if (level) {
                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
            } else {
                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
            }
        }
    } else if (!DeliveryMode::isReserved(deliveryMode)) {
        DPRINTF(LocalApic, "Interrupt is an %s.\n",
                DeliveryMode::names[deliveryMode]);
        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
            pendingUnmaskableInt = pendingSmi = true;
            smiVector = vector;
        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
            pendingUnmaskableInt = pendingNmi = true;
            nmiVector = vector;
        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
            pendingExtInt = true;
            extIntVector = vector;
        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
            pendingUnmaskableInt = pendingInit = true;
            initVector = vector;
        } else if (deliveryMode == DeliveryMode::SIPI &&
                !pendingStartup && !startedUp) {
            pendingUnmaskableInt = pendingStartup = true;
            startupVector = vector;
        }
    }
    if (FullSystem)
        cpu->wakeup(0);
}


void
X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
{
    assert(newCPU);
    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
        panic("Local APICs can't be moved between CPUs"
                " with different IDs.\n");
    }
    cpu = newCPU;
    initialApicId = cpu->cpuId();
    regs[APIC_ID] = (initialApicId << 24);
    pioAddr = x86LocalAPICAddress(initialApicId, 0);
}


void
X86ISA::Interrupts::init()
{
    //
    // The local apic must register its address ranges on both its pio
    // port via the basicpiodevice(piodevice) init() function and its
    // int port that it inherited from IntDevice.  Note IntDevice is
    // not a SimObject itself.
    //
    BasicPioDevice::init();
    IntDevice::init();

    // the slave port has a range so inform the connected master
    intSlavePort.sendRangeChange();
}


Tick
X86ISA::Interrupts::recvMessage(PacketPtr pkt)
{
    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
    assert(pkt->cmd == MemCmd::MessageReq);
    switch(offset)
    {
      case 0:
        {
            TriggerIntMessage message = pkt->getRaw<TriggerIntMessage>();
            DPRINTF(LocalApic,
                    "Got Trigger Interrupt message with vector %#x.\n",
                    message.vector);

            requestInterrupt(message.vector,
                    message.deliveryMode, message.trigger);
        }
        break;
      default:
        panic("Local apic got unknown interrupt message at offset %#x.\n",
                offset);
        break;
    }
    pkt->makeAtomicResponse();
    return pioDelay;
}


Tick
X86ISA::Interrupts::recvResponse(PacketPtr pkt)
{
    assert(!pkt->isError());
    assert(pkt->cmd == MemCmd::MessageResp);
    if (--pendingIPIs == 0) {
        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
        // Record that the ICR is now idle.
        low.deliveryStatus = 0;
        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
    }
    DPRINTF(LocalApic, "ICR is now idle.\n");
    return 0;
}


AddrRangeList
X86ISA::Interrupts::getIntAddrRange() const
{
    AddrRangeList ranges;
    ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
                             x86InterruptAddress(initialApicId, 0) +
                             PhysAddrAPICRangeSize));
    return ranges;
}


uint32_t
X86ISA::Interrupts::readReg(ApicRegIndex reg)
{
    if (reg >= APIC_TRIGGER_MODE(0) &&
            reg <= APIC_TRIGGER_MODE(15)) {
        panic("Local APIC Trigger Mode registers are unimplemented.\n");
    }
    switch (reg) {
      case APIC_ARBITRATION_PRIORITY:
        panic("Local APIC Arbitration Priority register unimplemented.\n");
        break;
      case APIC_PROCESSOR_PRIORITY:
        panic("Local APIC Processor Priority register unimplemented.\n");
        break;
      case APIC_ERROR_STATUS:
        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
        break;
      case APIC_CURRENT_COUNT:
        {
            if (apicTimerEvent.scheduled()) {
                // Compute how many m5 ticks happen per count.
                uint64_t ticksPerCount = clockPeriod() *
                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
                // Compute how many m5 ticks are left.
                uint64_t val = apicTimerEvent.when() - curTick();
                // Turn that into a count.
                val = (val + ticksPerCount - 1) / ticksPerCount;
                return val;
            } else {
                return 0;
            }
        }
      default:
        break;
    }
    return regs[reg];
}

void
X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
{
    uint32_t newVal = val;
    if (reg >= APIC_IN_SERVICE(0) &&
            reg <= APIC_IN_SERVICE(15)) {
        panic("Local APIC In-Service registers are unimplemented.\n");
    }
    if (reg >= APIC_TRIGGER_MODE(0) &&
            reg <= APIC_TRIGGER_MODE(15)) {
        panic("Local APIC Trigger Mode registers are unimplemented.\n");
    }
    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
            reg <= APIC_INTERRUPT_REQUEST(15)) {
        panic("Local APIC Interrupt Request registers "
                "are unimplemented.\n");
    }
    switch (reg) {
      case APIC_ID:
        newVal = val & 0xFF;
        break;
      case APIC_VERSION:
        // The Local APIC Version register is read only.
        return;
      case APIC_TASK_PRIORITY:
        newVal = val & 0xFF;
        break;
      case APIC_ARBITRATION_PRIORITY:
        panic("Local APIC Arbitration Priority register unimplemented.\n");
        break;
      case APIC_PROCESSOR_PRIORITY:
        panic("Local APIC Processor Priority register unimplemented.\n");
        break;
      case APIC_EOI:
        // Remove the interrupt that just completed from the local apic state.
        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
        updateISRV();
        return;
      case APIC_LOGICAL_DESTINATION:
        newVal = val & 0xFF000000;
        break;
      case APIC_DESTINATION_FORMAT:
        newVal = val | 0x0FFFFFFF;
        break;
      case APIC_SPURIOUS_INTERRUPT_VECTOR:
        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
        if (val & (1 << 9))
            warn("Focus processor checking not implemented.\n");
        break;
      case APIC_ERROR_STATUS:
        {
            if (regs[APIC_INTERNAL_STATE] & 0x1) {
                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
                newVal = 0;
            } else {
                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
                return;
            }

        }
        break;
      case APIC_INTERRUPT_COMMAND_LOW:
        {
            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
            // Check if we're already sending an IPI.
            if (low.deliveryStatus) {
                newVal = low;
                break;
            }
            low = val;
            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
            TriggerIntMessage message = 0;
            message.destination = high.destination;
            message.vector = low.vector;
            message.deliveryMode = low.deliveryMode;
            message.destMode = low.destMode;
            message.level = low.level;
            message.trigger = low.trigger;
            ApicList apics;
            int numContexts = sys->numContexts();
            switch (low.destShorthand) {
              case 0:
                if (message.deliveryMode == DeliveryMode::LowestPriority) {
                    panic("Lowest priority delivery mode "
                            "IPIs aren't implemented.\n");
                }
                if (message.destMode == 1) {
                    int dest = message.destination;
                    hack_once("Assuming logical destinations are 1 << id.\n");
                    for (int i = 0; i < numContexts; i++) {
                        if (dest & 0x1)
                            apics.push_back(i);
                        dest = dest >> 1;
                    }
                } else {
                    if (message.destination == 0xFF) {
                        for (int i = 0; i < numContexts; i++) {
                            if (i == initialApicId) {
                                requestInterrupt(message.vector,
                                        message.deliveryMode, message.trigger);
                            } else {
                                apics.push_back(i);
                            }
                        }
                    } else {
                        if (message.destination == initialApicId) {
                            requestInterrupt(message.vector,
                                    message.deliveryMode, message.trigger);
                        } else {
                            apics.push_back(message.destination);
                        }
                    }
                }
                break;
              case 1:
                newVal = val;
                requestInterrupt(message.vector,
                        message.deliveryMode, message.trigger);
                break;
              case 2:
                requestInterrupt(message.vector,
                        message.deliveryMode, message.trigger);
                // Fall through
              case 3:
                {
                    for (int i = 0; i < numContexts; i++) {
                        if (i != initialApicId) {
                            apics.push_back(i);
                        }
                    }
                }
                break;
            }
            // Record that an IPI is being sent if one actually is.
            if (apics.size()) {
                low.deliveryStatus = 1;
                pendingIPIs += apics.size();
            }
            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
            intMasterPort.sendMessage(apics, message, sys->isTimingMode());
            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
        }
        break;
      case APIC_LVT_TIMER:
      case APIC_LVT_THERMAL_SENSOR:
      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
      case APIC_LVT_LINT0:
      case APIC_LVT_LINT1:
      case APIC_LVT_ERROR:
        {
            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
            newVal = (val & ~readOnlyMask) |
                     (regs[reg] & readOnlyMask);
        }
        break;
      case APIC_INITIAL_COUNT:
        {
            newVal = bits(val, 31, 0);
            // Compute how many timer ticks we're being programmed for.
            uint64_t newCount = newVal *
                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
            // Schedule on the edge of the next tick plus the new count.
            Tick offset = curTick() % clockPeriod();
            if (offset) {
                reschedule(apicTimerEvent,
                           curTick() + (newCount + 1) *
                           clockPeriod() - offset, true);
            } else {
                if (newCount)
                    reschedule(apicTimerEvent,
                               curTick() + newCount *
                               clockPeriod(), true);
            }
        }
        break;
      case APIC_CURRENT_COUNT:
        //Local APIC Current Count register is read only.
        return;
      case APIC_DIVIDE_CONFIGURATION:
        newVal = val & 0xB;
        break;
      default:
        break;
    }
    regs[reg] = newVal;
    return;
}


X86ISA::Interrupts::Interrupts(Params * p)
    : BasicPioDevice(p, PageBytes), IntDevice(this, p->int_latency),
      apicTimerEvent([this]{ processApicTimerEvent(); }, name()),
      pendingSmi(false), smiVector(0),
      pendingNmi(false), nmiVector(0),
      pendingExtInt(false), extIntVector(0),
      pendingInit(false), initVector(0),
      pendingStartup(false), startupVector(0),
      startedUp(false), pendingUnmaskableInt(false),
      pendingIPIs(0), cpu(NULL),
      intSlavePort(name() + ".int_slave", this, this)
{
    memset(regs, 0, sizeof(regs));
    //Set the local apic DFR to the flat model.
    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
    ISRV = 0;
    IRRV = 0;
}


bool
X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
{
    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
    if (pendingUnmaskableInt) {
        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
        return true;
    }
    if (rflags.intf) {
        if (pendingExtInt) {
            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
            return true;
        }
        if (IRRV > ISRV && bits(IRRV, 7, 4) >
               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
            return true;
        }
    }
    return false;
}

bool
X86ISA::Interrupts::checkInterruptsRaw() const
{
    return pendingUnmaskableInt || pendingExtInt ||
        (IRRV > ISRV && bits(IRRV, 7, 4) >
         bits(regs[APIC_TASK_PRIORITY], 7, 4));
}

Fault
X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
{
    assert(checkInterrupts(tc));
    // These are all probably fairly uncommon, so we'll make them easier to
    // check for.
    if (pendingUnmaskableInt) {
        if (pendingSmi) {
            DPRINTF(LocalApic, "Generated SMI fault object.\n");
            return std::make_shared<SystemManagementInterrupt>();
        } else if (pendingNmi) {
            DPRINTF(LocalApic, "Generated NMI fault object.\n");
            return std::make_shared<NonMaskableInterrupt>(nmiVector);
        } else if (pendingInit) {
            DPRINTF(LocalApic, "Generated INIT fault object.\n");
            return std::make_shared<InitInterrupt>(initVector);
        } else if (pendingStartup) {
            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
            return std::make_shared<StartupInterrupt>(startupVector);
        } else {
            panic("pendingUnmaskableInt set, but no unmaskable "
                    "ints were pending.\n");
            return NoFault;
        }
    } else if (pendingExtInt) {
        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
        return std::make_shared<ExternalInterrupt>(extIntVector);
    } else {
        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
        // The only thing left are fixed and lowest priority interrupts.
        return std::make_shared<ExternalInterrupt>(IRRV);
    }
}

void
X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
{
    assert(checkInterrupts(tc));
    if (pendingUnmaskableInt) {
        if (pendingSmi) {
            DPRINTF(LocalApic, "SMI sent to core.\n");
            pendingSmi = false;
        } else if (pendingNmi) {
            DPRINTF(LocalApic, "NMI sent to core.\n");
            pendingNmi = false;
        } else if (pendingInit) {
            DPRINTF(LocalApic, "Init sent to core.\n");
            pendingInit = false;
            startedUp = false;
        } else if (pendingStartup) {
            DPRINTF(LocalApic, "SIPI sent to core.\n");
            pendingStartup = false;
            startedUp = true;
        }
        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
            pendingUnmaskableInt = false;
    } else if (pendingExtInt) {
        pendingExtInt = false;
    } else {
        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
        // Mark the interrupt as "in service".
        ISRV = IRRV;
        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
        // Clear it out of the IRR.
        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
        updateIRRV();
    }
}

void
X86ISA::Interrupts::serialize(CheckpointOut &cp) const
{
    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
    SERIALIZE_SCALAR(pendingSmi);
    SERIALIZE_SCALAR(smiVector);
    SERIALIZE_SCALAR(pendingNmi);
    SERIALIZE_SCALAR(nmiVector);
    SERIALIZE_SCALAR(pendingExtInt);
    SERIALIZE_SCALAR(extIntVector);
    SERIALIZE_SCALAR(pendingInit);
    SERIALIZE_SCALAR(initVector);
    SERIALIZE_SCALAR(pendingStartup);
    SERIALIZE_SCALAR(startupVector);
    SERIALIZE_SCALAR(startedUp);
    SERIALIZE_SCALAR(pendingUnmaskableInt);
    SERIALIZE_SCALAR(pendingIPIs);
    SERIALIZE_SCALAR(IRRV);
    SERIALIZE_SCALAR(ISRV);
    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
    SERIALIZE_SCALAR(apicTimerEventScheduled);
    Tick apicTimerEventTick = apicTimerEvent.when();
    SERIALIZE_SCALAR(apicTimerEventTick);
}

void
X86ISA::Interrupts::unserialize(CheckpointIn &cp)
{
    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
    UNSERIALIZE_SCALAR(pendingSmi);
    UNSERIALIZE_SCALAR(smiVector);
    UNSERIALIZE_SCALAR(pendingNmi);
    UNSERIALIZE_SCALAR(nmiVector);
    UNSERIALIZE_SCALAR(pendingExtInt);
    UNSERIALIZE_SCALAR(extIntVector);
    UNSERIALIZE_SCALAR(pendingInit);
    UNSERIALIZE_SCALAR(initVector);
    UNSERIALIZE_SCALAR(pendingStartup);
    UNSERIALIZE_SCALAR(startupVector);
    UNSERIALIZE_SCALAR(startedUp);
    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
    UNSERIALIZE_SCALAR(pendingIPIs);
    UNSERIALIZE_SCALAR(IRRV);
    UNSERIALIZE_SCALAR(ISRV);
    bool apicTimerEventScheduled;
    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
    if (apicTimerEventScheduled) {
        Tick apicTimerEventTick;
        UNSERIALIZE_SCALAR(apicTimerEventTick);
        if (apicTimerEvent.scheduled()) {
            reschedule(apicTimerEvent, apicTimerEventTick, true);
        } else {
            schedule(apicTimerEvent, apicTimerEventTick);
        }
    }
}

X86ISA::Interrupts *
X86LocalApicParams::create()
{
    return new X86ISA::Interrupts(this);
}

void
X86ISA::Interrupts::processApicTimerEvent() {
    if (triggerTimerInterrupt())
        setReg(APIC_INITIAL_COUNT, readReg(APIC_INITIAL_COUNT));
}