summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/formats/multi.isa
blob: 9fceec2b014a63be7c4eac3cbe18b29ccfda83a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// -*- mode:c++ -*-

// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use.  Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
//     Director of Intellectual Property Licensing
//     Office of Strategy and Technology
//     Hewlett-Packard Company
//     1501 Page Mill Road
//     Palo Alto, California  94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.  Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.  Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.  No right of
// sublicense is granted herewith.  Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses.  Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black

////////////////////////////////////////////////////////////////////
//
// Instructions that do the same thing to multiple sets of arguments.
//

let {{
    # This builds either a regular or macro op to implement the sequence of
    # ops we give it.
    def genInst(name, Name, ops):
        # If we can implement this instruction with exactly one microop, just
        # use that directly.
        newStmnt = ''
        if len(ops) == 1:
            decode_block = "return (X86StaticInst *)(%s);" % \
                            ops[0].getAllocator()
            return ('', '', decode_block, '')
        else:
            # Build a macroop to contain the sequence of microops we've
            # been given.
            return genMacroOp(name, Name, ops)
}};

let {{
    # This code builds up a decode block which decodes based on switchval.
    # vals is a dict which matches case values with what should be decoded to.
    # builder is called on the exploded contents of "vals" values to generate
    # whatever code should be used.
    def doMultiOp(name, Name, builder, switchVal, vals, default = None):
        header_output = ''
        decoder_output = ''
        decode_block = 'switch(%s) {\n' % switchVal
        exec_output = ''
        for (val, todo) in vals.items():
            (new_header_output,
             new_decoder_output,
             new_decode_block,
             new_exec_output) = builder(name, Name, *todo)
            header_output += new_header_output
            decoder_output += new_decoder_output
            decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
            exec_output += new_exec_output
        if default:
            (new_header_output,
             new_decoder_output,
             new_decode_block,
             new_exec_output) = builder(name, Name, *default)
            header_output += new_header_output
            decoder_output += new_decoder_output
            decode_block += '\tdefault: %s\n' % new_decode_block
            exec_output += new_exec_output
        decode_block += '}\n'
        return (header_output, decoder_output, decode_block, exec_output)
}};

let {{

    # This function specializes the given piece of code to use a particular
    # set of argument types described by "opTags". These are "implemented"
    # in reverse order.
    def doCompOps(name, Name, code, opTags, postfix):
        opNum = len(opTags) - 1
        while len(opTags):
            # print "Building a composite op with tags", opTags
            # print "And code", code
            opNum = len(opTags) - 1
            # A regular expression to find the operand placeholders we're
            # interested in.
            opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
            tag = opTags[opNum]
            # Build up a name for this instructions class using the argument
            # types. Each variation will get its own name this way.
            postfix = '_' + tag + postfix
            tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
            tagMatch = tagParser.search(tag)
            if tagMatch == None:
                raise Exception, "Problem parsing operand tag %s" % tag
            reg = tagMatch.group("tagReg")
            tagType = tagMatch.group("tagType")
            tagSize = tagMatch.group("tagSize")
            if reg:
                #Figure out what to do with fixed register operands
                if reg in ("Ax", "Bx", "Cx", "Dx"):
                    code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
                elif reg == "Al":
                    # We need a way to specify register width
                    code = opRe.sub("{INTREG_RAX}", code)
                else:
                    print "Didn't know how to encode fixed register %s!" % reg
            elif tagType == None or tagSize == None:
                raise Exception, "Problem parsing operand tag: %s" % tag
            elif tagType == "C" or tagType == "D" or tagType == "G" or \
                                   tagType == "P" or tagType == "S" or \
                                   tagType == "T" or tagType == "V":
                # Use the "reg" field of the ModRM byte to select the register
                code = opRe.sub("{(uint8_t)MODRM_REG}", code)
            elif tagType == "E" or tagType == "Q" or tagType == "W":
                # This might refer to memory or to a register. We need to
                # divide it up farther.
                regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
                regTags = copy.copy(opTags)
                regTags.pop(-1)
                # This needs to refer to memory, but we'll fill in the details
                # later. It needs to take into account unaligned memory
                # addresses.
                memCode = opRe.sub("0", code)
                memTags = copy.copy(opTags)
                memTags.pop(-1)
                return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
                    {"3" : (regCode, regTags, postfix)},
                           (memCode, memTags, postfix))
            elif tagType == "I" or tagType == "J":
                # Substitute in an immediate
                code = opRe.sub("{IMMEDIATE}", code)
            elif tagType == "M":
                # This needs to refer to memory, but we'll fill in the details
                # later. It needs to take into account unaligned memory
                # addresses.
                code = opRe.sub("0", code)
            elif tagType == "PR" or tagType == "R" or tagType == "VR":
                # There should probably be a check here to verify that mod
                # is equal to 11b
                code = opRe.sub("{(uint8_t)MODRM_RM}", code)
            else:
                raise Exception, "Unrecognized tag %s." % tag
            opTags.pop(-1)

        # At this point, we've built up "code" to have all the necessary extra
        # instructions needed to implement whatever types of operands were
        # specified. Now we'll assemble it it into a microOp sequence.
        ops = assembleMicro(code)

        # Build a macroop to contain the sequence of microops we've
        # constructed. The decode block will be used to fill in our
        # inner decode structure, and the rest will be concatenated and
        # passed back.
        return genInst(name, Name + postfix, ops)
}};

def format TaggedOp(code, tagSet) {{
    (header_output,
     decoder_output,
     decode_block,
     exec_output) = doCompOps(name, Name, code, tagSet, '')
}};

def format MultiOp(code, switchVal, opTags, *opt_flags) {{
    switcher = {}
    for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
        switcher[count] = (code, tagSet, '')
    (header_output,
     decoder_output,
     decode_block,
     exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
}};