summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/insts/general_purpose/arithmetic/multiply_and_divide.py
blob: 8005493595a5085b8f0d6d01798b25c4aa56d0b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) 2007 The Hewlett-Packard Development Company
# All rights reserved.
#
# Redistribution and use of this software in source and binary forms,
# with or without modification, are permitted provided that the
# following conditions are met:
#
# The software must be used only for Non-Commercial Use which means any
# use which is NOT directed to receiving any direct monetary
# compensation for, or commercial advantage from such use.  Illustrative
# examples of non-commercial use are academic research, personal study,
# teaching, education and corporate research & development.
# Illustrative examples of commercial use are distributing products for
# commercial advantage and providing services using the software for
# commercial advantage.
#
# If you wish to use this software or functionality therein that may be
# covered by patents for commercial use, please contact:
#     Director of Intellectual Property Licensing
#     Office of Strategy and Technology
#     Hewlett-Packard Company
#     1501 Page Mill Road
#     Palo Alto, California  94304
#
# Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.  Redistributions
# in binary form must reproduce the above copyright notice, this list of
# conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.  Neither the name of
# the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.  No right of
# sublicense is granted herewith.  Derivatives of the software and
# output created using the software may be prepared, but only for
# Non-Commercial Uses.  Derivatives of the software may be shared with
# others provided: (i) the others agree to abide by the list of
# conditions herein which includes the Non-Commercial Use restrictions;
# and (ii) such Derivatives of the software include the above copyright
# notice to acknowledge the contribution from this software where
# applicable, this list of conditions and the disclaimer below.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Gabe Black

microcode = '''

#
# Byte version of one operand unsigned multiply.
#

def macroop MUL_B_R
{
    mul1u rax, reg, flags=(OF,CF)
    mulel rax
    muleh ah
};

def macroop MUL_B_M
{
    ld t1, seg, sib, disp
    mul1u rax, t1, flags=(OF,CF)
    mulel rax
    muleh ah
};

def macroop MUL_B_P
{
    rdip t7
    ld t1, seg, riprel, disp
    mul1u rax, t1, flags=(OF,CF)
    mulel rax
    muleh ah
};

#
# One operand unsigned multiply.
#

def macroop MUL_R
{
    mul1u rax, reg, flags=(OF,CF)
    mulel rax
    muleh rdx
};

def macroop MUL_M
{
    ld t1, seg, sib, disp
    mul1u rax, t1, flags=(OF,CF)
    mulel rax
    muleh rdx
};

def macroop MUL_P
{
    rdip t7
    ld t1, seg, riprel, disp
    mul1u rax, t1, flags=(OF,CF)
    mulel rax
    muleh rdx
};

#
# Byte version of one operand signed multiply.
#

def macroop IMUL_B_R
{
    mul1s rax, reg, flags=(OF,CF)
    mulel rax
    muleh ah
};

def macroop IMUL_B_M
{
    ld t1, seg, sib, disp
    mul1s rax, t1, flags=(OF,CF)
    mulel rax
    muleh ah
};

def macroop IMUL_B_P
{
    rdip t7
    ld t1, seg, riprel, disp
    mul1s rax, t1, flags=(OF,CF)
    mulel rax
    muleh ah
};

#
# One operand signed multiply.
#

def macroop IMUL_R
{
    mul1s rax, reg, flags=(OF,CF)
    mulel rax
    muleh rdx
};

def macroop IMUL_M
{
    ld t1, seg, sib, disp
    mul1s rax, t1, flags=(OF,CF)
    mulel rax
    muleh rdx
};

def macroop IMUL_P
{
    rdip t7
    ld t1, seg, riprel, disp
    mul1s rax, t1, flags=(OF,CF)
    mulel rax
    muleh rdx
};

def macroop IMUL_R_R
{
    mul1s reg, regm, flags=(OF,CF)
    mulel reg
    muleh t0
};

def macroop IMUL_R_M
{
    ld t1, seg, sib, disp
    mul1s reg, t1, flags=(CF,OF)
    mulel reg
    muleh t0
};

def macroop IMUL_R_P
{
    rdip t7
    ld t1, seg, riprel, disp
    mul1s reg, t1, flags=(CF,OF)
    mulel reg
    muleh t0
};

#
# Three operand signed multiply.
#

def macroop IMUL_R_R_I
{
    limm t1, imm
    mul1s regm, t1, flags=(OF,CF)
    mulel reg
    muleh t0
};

def macroop IMUL_R_M_I
{
    limm t1, imm
    ld t2, seg, sib, disp
    mul1s t2, t1, flags=(OF,CF)
    mulel reg
    muleh t0
};

def macroop IMUL_R_P_I
{
    rdip t7
    limm t1, imm
    ld t2, seg, riprel
    mul1s t2, t1, flags=(OF,CF)
    mulel reg
    muleh t0
};
'''

pcRel = '''
    rdip t7
    ld %s, seg, riprel, disp
'''
sibRel = '''
    ld %s, seg, sib, disp
'''

#
# One byte version of unsigned division
#

divcode = '''
def macroop DIV_B_%(suffix)s
{
    %(readOp1)s
    # Do the initial part of the division
    div1 ah, %(op1)s, dataSize=1

    #These are split out so we can initialize the number of bits in the
    #second register
    div2i t1, rax, 8, dataSize=1
    div2 t1, rax, t1, dataSize=1

    #Loop until we're out of bits to shift in
divLoopTop:
    div2 t1, rax, t1, dataSize=1
    div2 t1, rax, t1, flags=(EZF,), dataSize=1
    br label("divLoopTop"), flags=(nCEZF,)

    #Unload the answer
    divq rax, dataSize=1
    divr ah, dataSize=1
};
'''

#
# Unsigned division
#

divcode += '''
def macroop DIV_%(suffix)s
{
    %(readOp1)s
    # Do the initial part of the division
    div1 rdx, %(op1)s

    #These are split out so we can initialize the number of bits in the
    #second register
    div2i t1, rax, "env.dataSize * 8"
    div2 t1, rax, t1

    #Loop until we're out of bits to shift in
    #The amount of unrolling here could stand some tuning
divLoopTop:
    div2 t1, rax, t1
    div2 t1, rax, t1
    div2 t1, rax, t1
    div2 t1, rax, t1, flags=(EZF,)
    br label("divLoopTop"), flags=(nCEZF,)

    #Unload the answer
    divq rax
    divr rdx
};
'''

#
# One byte version of signed division
#

divcode += '''
def macroop IDIV_B_%(suffix)s
{
    # Negate dividend
    sub t1, t0, rax, flags=(ECF,), dataSize=1
    ruflag t4, 3
    sub t2, t0, ah, dataSize=1
    sub t2, t2, t4

    %(readOp1)s

    #Find the sign of the divisor
    slli t0, %(op1)s, 1, flags=(ECF,), dataSize=1

    # Negate divisor
    sub t3, t0, %(op1)s, dataSize=1
    # Put the divisor's absolute value into t3
    mov t3, t3, %(op1)s, flags=(nCECF,), dataSize=1

    #Find the sign of the dividend
    slli t0, ah, 1, flags=(ECF,), dataSize=1

    # Put the dividend's absolute value into t1 and t2
    mov t1, t1, rax, flags=(nCECF,), dataSize=1
    mov t2, t2, ah, flags=(nCECF,), dataSize=1

    # Do the initial part of the division
    div1 t2, t3, dataSize=1

    #These are split out so we can initialize the number of bits in the
    #second register
    div2i t4, t1, 8, dataSize=1
    div2 t4, t1, t4, dataSize=1

    #Loop until we're out of bits to shift in
divLoopTop:
    div2 t4, t1, t4, dataSize=1
    div2 t4, t1, t4, flags=(EZF,), dataSize=1
    br label("divLoopTop"), flags=(nCEZF,)

    #Unload the answer
    divq t5, dataSize=1
    divr t6, dataSize=1

    # Fix up signs. The sign of the dividend is still lying around in ECF.
    # The sign of the remainder, ah, is the same as the dividend. The sign
    # of the quotient is negated if the signs of the divisor and dividend
    # were different.

    # Negate the remainder
    sub t4, t0, t6, dataSize=1
    # If the dividend was negitive, put the negated remainder in ah.
    mov ah, ah, t4, (CECF,), dataSize=1
    # Otherwise put the regular remainder in ah.
    mov ah, ah, t6, (nCECF,), dataSize=1

    # Negate the quotient.
    sub t4, t0, t5, dataSize=1
    # If the dividend was negative, start using the negated quotient
    mov t5, t5, t4, (CECF,), dataSize=1

    # Check the sign of the divisor
    slli t0, %(op1)s, 1, flags=(ECF,), dataSize=1

    # Negate the (possibly already negated) quotient
    sub t4, t0, t5, dataSize=1
    # If the divisor was negative, put the negated quotient in rax.
    mov rax, rax, t4, (CECF,), dataSize=1
    # Otherwise put the one that wasn't negated (at least here) in rax.
    mov rax, rax, t5, (nCECF,), dataSize=1
};
'''

#
# Signed division
#

divcode += '''
def macroop IDIV_%(suffix)s
{
    # Negate dividend
    sub t1, t0, rax, flags=(ECF,)
    ruflag t4, 3
    sub t2, t0, rdx
    sub t2, t2, t4

    %(readOp1)s

    #Find the sign of the divisor
    slli t0, %(op1)s, 1, flags=(ECF,)

    # Negate divisor
    sub t3, t0, %(op1)s
    # Put the divisor's absolute value into t3
    mov t3, t3, %(op1)s, flags=(nCECF,)

    #Find the sign of the dividend
    slli t0, rdx, 1, flags=(ECF,)

    # Put the dividend's absolute value into t1 and t2
    mov t1, t1, rax, flags=(nCECF,)
    mov t2, t2, rdx, flags=(nCECF,)

    # Do the initial part of the division
    div1 t2, t3

    #These are split out so we can initialize the number of bits in the
    #second register
    div2i t4, t1, "env.dataSize * 8"
    div2 t4, t1, t4

    #Loop until we're out of bits to shift in
divLoopTop:
    div2 t4, t1, t4
    div2 t4, t1, t4
    div2 t4, t1, t4
    div2 t4, t1, t4, flags=(EZF,)
    br label("divLoopTop"), flags=(nCEZF,)

    #Unload the answer
    divq t5
    divr t6

    # Fix up signs. The sign of the dividend is still lying around in ECF.
    # The sign of the remainder, ah, is the same as the dividend. The sign
    # of the quotient is negated if the signs of the divisor and dividend
    # were different.

    # Negate the remainder
    sub t4, t0, t6
    # If the dividend was negitive, put the negated remainder in rdx.
    mov rdx, rdx, t4, (CECF,)
    # Otherwise put the regular remainder in rdx.
    mov rdx, rdx, t6, (nCECF,)

    # Negate the quotient.
    sub t4, t0, t5
    # If the dividend was negative, start using the negated quotient
    mov t5, t5, t4, (CECF,)

    # Check the sign of the divisor
    slli t0, %(op1)s, 1, flags=(ECF,)

    # Negate the (possibly already negated) quotient
    sub t4, t0, t5
    # If the divisor was negative, put the negated quotient in rax.
    mov rax, rax, t4, (CECF,)
    # Otherwise put the one that wasn't negated (at least here) in rax.
    mov rax, rax, t5, (nCECF,)
};
'''

microcode += divcode % {"suffix": "R",
                        "readOp1": "", "op1": "reg"}
microcode += divcode % {"suffix": "M",
                        "readOp1": sibRel % "t2", "op1": "t2"}
microcode += divcode % {"suffix": "P",
                        "readOp1": pcRel % "t2", "op1": "t2"}