summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/microasm.isa
blob: 592941d04d62578a0a59deb468d950ade1af1070 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// -*- mode:c++ -*-

// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use.  Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
//     Director of Intellectual Property Licensing
//     Office of Strategy and Technology
//     Hewlett-Packard Company
//     1501 Page Mill Road
//     Palo Alto, California  94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.  Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.  Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.  No right of
// sublicense is granted herewith.  Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses.  Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black

////////////////////////////////////////////////////////////////////
//
//  Code to "specialize" a microcode sequence to use a particular
//  variety of operands
//

let {{
    # This code builds up a decode block which decodes based on switchval.
    # vals is a dict which matches case values with what should be decoded to.
    # builder is called on the exploded contents of "vals" values to generate
    # whatever code should be used.
    def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
        header_output = ''
        decoder_output = ''
        decode_block = 'switch(%s) {\n' % switchVal
        exec_output = ''
        for (val, todo) in vals.items():
            (new_header_output,
             new_decoder_output,
             new_decode_block,
             new_exec_output) = builder(name, Name, *todo)
            header_output += new_header_output
            decoder_output += new_decoder_output
            decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
            exec_output += new_exec_output
        if default:
            (new_header_output,
             new_decoder_output,
             new_decode_block,
             new_exec_output) = builder(name, Name, *default)
            header_output += new_header_output
            decoder_output += new_decoder_output
            decode_block += '\tdefault: %s\n' % new_decode_block
            exec_output += new_exec_output
        decode_block += '}\n'
        return (header_output, decoder_output, decode_block, exec_output)
}};

let {{
    class OpType(object):
        parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
        def __init__(self, opTypeString):
            match = OpType.parser.search(opTypeString)
            if match == None:
                raise Exception, "Problem parsing operand type %s" % opTypeString
            self.reg = match.group("reg")
            self.tag = match.group("tag")
            self.size = match.group("size")

    # This function specializes the given piece of code to use a particular
    # set of argument types described by "opTypes". These are "implemented"
    # in reverse order.
    def specializeInst(name, Name, code, opTypes):
        opNum = len(opTypes) - 1
        while len(opTypes):
            # print "Building a composite op with tags", opTypes
            # print "And code", code
            opNum = len(opTypes) - 1
            # A regular expression to find the operand placeholders we're
            # interested in.
            opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)

            # Parse the operand type strign we're working with
            opType = OpType(opTypes[opNum])

            if opType.reg:
                #Figure out what to do with fixed register operands
                if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
                    code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
                elif opType.reg == "Al":
                    # We need a way to specify register width
                    code = opRe.sub("%{INTREG_RAX}", code)
                else:
                    print "Didn't know how to encode fixed register %s!" % opType.reg
            elif opType.tag == None or opType.size == None:
                raise Exception, "Problem parsing operand tag: %s" % opType.tag
            elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
                # Use the "reg" field of the ModRM byte to select the register
                code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
            elif opType.tag in ("E", "Q", "W"):
                # This might refer to memory or to a register. We need to
                # divide it up farther.
                regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
                regTypes = copy.copy(opTypes)
                regTypes.pop(-1)
                # This needs to refer to memory, but we'll fill in the details
                # later. It needs to take into account unaligned memory
                # addresses.
                memCode = opRe.sub("%0", code)
                memTypes = copy.copy(opTypes)
                memTypes.pop(-1)
                return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
                    {"3" : (regCode, regTypes)}, (memCode, memTypes))
            elif opType.tag in ("I", "J"):
                # Immediates are already in the instruction, so don't leave in
                # those parameters
                code = opRe.sub("${IMMEDIATE}", code)
            elif opType.tag == "M":
                # This needs to refer to memory, but we'll fill in the details
                # later. It needs to take into account unaligned memory
                # addresses.
                code = opRe.sub("%0", code)
            elif opType.tag in ("PR", "R", "VR"):
                # There should probably be a check here to verify that mod
                # is equal to 11b
                code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
            else:
                raise Exception, "Unrecognized tag %s." % opType.tag
            opTypes.pop(-1)

        # At this point, we've built up "code" to have all the necessary extra
        # instructions needed to implement whatever types of operands were
        # specified. Now we'll assemble it it into a StaticInst.
        return assembleMicro(name, Name, code)
}};

////////////////////////////////////////////////////////////////////
//
//  The microcode assembler
//

let {{
    # These are used when setting up microops so that they can specialize their
    # base class template properly.
    RegOpType = "RegisterOperand"
    ImmOpType = "ImmediateOperand"
}};

let {{
    class MicroOpStatement(object):
        def __init__(self):
            self.className = ''
            self.label = ''
            self.args = []

        # This converts a list of python bools into
        # a comma seperated list of C++ bools.
        def microFlagsText(self, vals):
            text = ""
            for val in vals:
                if val:
                    text += ", true"
                else:
                    text += ", false"
            return text

        def getAllocator(self, *microFlags):
            args = ''
            signature = "<"
            emptySig = True
            for arg in self.args:
                if not emptySig:
                    signature += ", "
                emptySig = False
                if arg.has_key("operandImm"):
                    args += ", %s" % arg["operandImm"]
                    signature += ImmOpType
                elif arg.has_key("operandReg"):
                    args += ", %s" % arg["operandReg"]
                    signature += RegOpType
                elif arg.has_key("operandLabel"):
                    raise Exception, "Found a label while creating allocator string."
                else:
                    raise Exception, "Unrecognized operand type."
            signature += ">"
            return 'new %s%s(machInst%s%s)' % (self.className, signature, self.microFlagsText(microFlags), args)
}};

let{{
    def assembleMicro(name, Name, code):

        # This function takes in a block of microcode assembly and returns
        # a python list of objects which describe it.

        # Keep this around in case we need it later
        orig_code = code
        # A list of the statements we've found thus far
        statements = []

        # Regular expressions to pull each piece of the statement out at a
        # time. Each expression expects the thing it's looking for to be at
        # the beginning of the line, so the previous component is stripped
        # before continuing.
        labelRe = re.compile(r'^[ \t]*(?P<label>\w\w*)[ \t]:')
        lineRe = re.compile(r'^(?P<line>[^\n][^\n]*)$')
        classRe = re.compile(r'^[ \t]*(?P<className>[a-zA-Z_]\w*)')
        # This recognizes three different flavors of operands:
        # 1. Raw decimal numbers composed of digits between 0 and 9
        # 2. Code beginning with "{" and continuing until the first "}"
        #         ^ This one might need revising
        # 3. A label, which starts with a capital or small letter, or
        #    underscore, which is optionally followed by a sequence of
        #    capital or small letters, underscores, or digts between 0 and 9
        opRe = re.compile( \
            r'^[ \t]*((\@(?P<operandLabel0>\w\w*))|' +
                    r'(\@\{(?P<operandLabel1>[^}]*)\})|' +
                    r'(\%(?P<operandReg0>\w\w*))|' +
                    r'(\%\{(?P<operandReg1>[^}]*)\})|' +
                    r'(\$(?P<operandImm0>\w\w*))|' +
                    r'(\$\{(?P<operandImm1>[^}]*)\}))')
        lineMatch = lineRe.search(code)
        while lineMatch != None:
            statement = MicroOpStatement()
            # Get a line and seperate it from the rest of the code
            line = lineMatch.group("line")
            orig_line = line
            # print "Parsing line %s" % line
            code = lineRe.sub('', code, 1)

            # Find the label, if any
            labelMatch = labelRe.search(line)
            if labelMatch != None:
                statement.label = labelMatch.group("label")
                # print "Found label %s." % statement.label
            # Clear the label from the statement
            line = labelRe.sub('', line, 1)

            # Find the class name which is roughly equivalent to the op name
            classMatch = classRe.search(line)
            if classMatch == None:
                raise Exception, "Couldn't find class name in statement: %s" \
                        % orig_line
            else:
                statement.className = classMatch.group("className")
                # print "Found class name %s." % statement.className

            # Clear the class name from the statement
            line = classRe.sub('', line, 1)

            #Find as many arguments as you can
            statement.args = []
            opMatch = opRe.search(line)
            while opMatch is not None:
                statement.args.append({})
                # args is a list of dicts which collect different
                # representations of operand values. Different forms might be
                # needed in different places, for instance to replace a label
                # with an offset.
                for opType in ("operandLabel0", "operandReg0", "operandImm0",
                               "operandLabel1", "operandReg1", "operandImm1"):
                    if opMatch.group(opType):
                        statement.args[-1][opType[:-1]] = opMatch.group(opType)
                if len(statement.args[-1]) == 0:
                    print "Problem parsing operand in statement: %s" \
                            % orig_line
                line = opRe.sub('', line, 1)
                # print "Found operand %s." % statement.args[-1]
                opMatch = opRe.search(line)
            # print "Found operands", statement.args

            # Add this statement to our collection
            statements.append(statement)

            # Get the next line
            lineMatch = lineRe.search(code)

        # Decode the labels into displacements

        labels = {}
        micropc = 0
        for statement in statements:
            if statement.label:
                labels[statement.label] = count
            micropc += 1
        micropc = 0
        for statement in statements:
            for arg in statement.args:
                if arg.has_key("operandLabel"):
                    if not labels.has_key(arg["operandLabel"]):
                        raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
                    # This is assuming that intra microcode branches go to
                    # the next micropc + displacement, or
                    # micropc + 1 + displacement.
                    arg["operandImm"] = labels[arg["operandLabel"]] - micropc - 1
            micropc += 1

        # If we can implement this instruction with exactly one microop, just
        # use that directly.
        if len(statements) == 1:
            decode_block = "return %s;" % \
                            statements[0].getAllocator()
            return ('', '', decode_block, '')
        else:
            # Build a macroop to contain the sequence of microops we've
            # been given.
            return genMacroOp(name, Name, statements)
}};