1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// Copyright (c) 2007 The Hewlett-Packard Development Company
// Copyright (c) 2012-2013 Mark D. Hill and David A. Wood
// Copyright (c) 2015 Advanced Micro Devices, Inc.
//
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
// Nilay Vaish
//////////////////////////////////////////////////////////////////////////
//
// FpOp Microop templates
//
//////////////////////////////////////////////////////////////////////////
def template MicroFpOpExecute {{
Fault %(class_name)s::execute(ExecContext *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
DPRINTF(X86, "The data size is %d\n", dataSize);
%(op_decl)s;
%(op_rd)s;
if(%(cond_check)s)
{
%(code)s;
%(flag_code)s;
%(tag_code)s;
%(top_code)s;
}
else
{
%(else_code)s;
}
//Write the resulting state to the execution context
if(fault == NoFault)
{
%(op_wb)s;
}
return fault;
}
}};
def template MicroFpOpDeclare {{
class %(class_name)s : public %(base_class)s
{
public:
%(class_name)s(ExtMachInst _machInst,
const char * instMnem, uint64_t setFlags,
InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
uint8_t _dataSize, int8_t _spm);
Fault execute(ExecContext *, Trace::InstRecord *) const;
};
}};
def template MicroFpOpConstructor {{
%(class_name)s::%(class_name)s(
ExtMachInst machInst, const char * instMnem, uint64_t setFlags,
InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
uint8_t _dataSize, int8_t _spm) :
%(base_class)s(machInst, "%(mnemonic)s", instMnem, setFlags,
_src1, _src2, _dest, _dataSize, _spm,
%(op_class)s)
{
%(constructor)s;
}
}};
let {{
# Make these empty strings so that concatenating onto
# them will always work.
header_output = ""
decoder_output = ""
exec_output = ""
class FpOpMeta(type):
def buildCppClasses(self, name, Name, suffix, \
code, flag_code, cond_check, else_code, op_class):
# Globals to stick the output in
global header_output
global decoder_output
global exec_output
# Stick all the code together so it can be searched at once
allCode = "|".join((code, flag_code, cond_check, else_code))
# If there's something optional to do with flags, generate
# a version without it and fix up this version to use it.
if flag_code is not "" or cond_check is not "true":
self.buildCppClasses(name, Name, suffix,
code, "", "true", else_code, op_class)
suffix = "Flags" + suffix
base = "X86ISA::FpOp"
# Get everything ready for the substitution
iop_tag = InstObjParams(name, Name + suffix + "TopTag", base,
{"code" : code,
"flag_code" : flag_code,
"cond_check" : cond_check,
"else_code" : else_code,
"tag_code" : "FTW = genX87Tags(FTW, TOP, spm);",
"top_code" : "TOP = (TOP + spm + 8) % 8;",
"op_class" : op_class})
iop_top = InstObjParams(name, Name + suffix + "Top", base,
{"code" : code,
"flag_code" : flag_code,
"cond_check" : cond_check,
"else_code" : else_code,
"tag_code" : ";",
"top_code" : "TOP = (TOP + spm + 8) % 8;",
"op_class" : op_class})
iop = InstObjParams(name, Name + suffix, base,
{"code" : code,
"flag_code" : flag_code,
"cond_check" : cond_check,
"else_code" : else_code,
"tag_code" : ";",
"top_code" : ";",
"op_class" : op_class})
# Generate the actual code (finally!)
header_output += MicroFpOpDeclare.subst(iop_tag)
decoder_output += MicroFpOpConstructor.subst(iop_tag)
exec_output += MicroFpOpExecute.subst(iop_tag)
header_output += MicroFpOpDeclare.subst(iop_top)
decoder_output += MicroFpOpConstructor.subst(iop_top)
exec_output += MicroFpOpExecute.subst(iop_top)
header_output += MicroFpOpDeclare.subst(iop)
decoder_output += MicroFpOpConstructor.subst(iop)
exec_output += MicroFpOpExecute.subst(iop)
def __new__(mcls, Name, bases, dict):
abstract = False
name = Name.lower()
if "abstract" in dict:
abstract = dict['abstract']
del dict['abstract']
cls = super(FpOpMeta, mcls).__new__(mcls, Name, bases, dict)
if not abstract:
cls.className = Name
cls.mnemonic = name
code = cls.code
flag_code = cls.flag_code
cond_check = cls.cond_check
else_code = cls.else_code
op_class = cls.op_class
# Set up the C++ classes
mcls.buildCppClasses(cls, name, Name, "",
code, flag_code, cond_check, else_code, op_class)
# Hook into the microassembler dict
global microopClasses
microopClasses[name] = cls
return cls
class FpUnaryOp(X86Microop):
__metaclass__ = FpOpMeta
# This class itself doesn't act as a microop
abstract = True
# Default template parameter values
flag_code = ""
cond_check = "true"
else_code = ";"
op_class = "FloatAddOp"
def __init__(self, dest, src1, spm=0, \
SetStatus=False, UpdateFTW=True, dataSize="env.dataSize"):
self.dest = dest
self.src1 = src1
self.src2 = "InstRegIndex(0)"
self.spm = spm
self.dataSize = dataSize
if SetStatus:
self.className += "Flags"
if spm:
self.className += "Top"
if spm and UpdateFTW:
self.className += "Tag"
def getAllocator(self, microFlags):
return '''new %(class_name)s(machInst, macrocodeBlock,
%(flags)s, %(src1)s, %(src2)s, %(dest)s,
%(dataSize)s, %(spm)d)''' % {
"class_name" : self.className,
"flags" : self.microFlagsText(microFlags),
"src1" : self.src1, "src2" : self.src2,
"dest" : self.dest,
"dataSize" : self.dataSize,
"spm" : self.spm}
class FpBinaryOp(X86Microop):
__metaclass__ = FpOpMeta
# This class itself doesn't act as a microop
abstract = True
# Default template parameter values
flag_code = ""
cond_check = "true"
else_code = ";"
op_class = "FloatAddOp"
def __init__(self, dest, src1, src2, spm=0, \
SetStatus=False, UpdateFTW=True, dataSize="env.dataSize"):
self.dest = dest
self.src1 = src1
self.src2 = src2
self.spm = spm
self.dataSize = dataSize
if SetStatus:
self.className += "Flags"
if spm:
self.className += "Top"
if spm and UpdateFTW:
self.className += "Tag"
def getAllocator(self, microFlags):
return '''new %(class_name)s(machInst, macrocodeBlock,
%(flags)s, %(src1)s, %(src2)s, %(dest)s,
%(dataSize)s, %(spm)d)''' % {
"class_name" : self.className,
"flags" : self.microFlagsText(microFlags),
"src1" : self.src1, "src2" : self.src2,
"dest" : self.dest,
"dataSize" : self.dataSize,
"spm" : self.spm}
class Movfp(FpUnaryOp):
code = 'FpDestReg_uqw = FpSrcReg1_uqw;'
else_code = 'FpDestReg_uqw = FpDestReg_uqw;'
cond_check = "checkCondition(ccFlagBits | cfofBits | dfBit | \
ecfBit | ezfBit, src2)"
op_class = 'IntAluOp'
class Xorfp(FpBinaryOp):
code = 'FpDestReg_uqw = FpSrcReg1_uqw ^ FpSrcReg2_uqw;'
class Sqrtfp(FpBinaryOp):
code = 'FpDestReg = sqrt(FpSrcReg2);'
op_class = 'FloatSqrtOp'
class Cosfp(FpUnaryOp):
code = 'FpDestReg = cos(FpSrcReg1);'
op_class = 'FloatSqrtOp'
class Sinfp(FpUnaryOp):
code = 'FpDestReg = sin(FpSrcReg1);'
op_class = 'FloatSqrtOp'
class Tanfp(FpUnaryOp):
code = 'FpDestReg = tan(FpSrcReg1);'
op_class = 'FloatSqrtOp'
# Conversion microops
class ConvOp(FpBinaryOp):
abstract = True
op_class = 'FloatCvtOp'
def __init__(self, dest, src1, **kwargs):
super(ConvOp, self).__init__(dest, src1, \
"InstRegIndex(FLOATREG_MICROFP0)", \
**kwargs)
# These probably shouldn't look at the ExtMachInst directly to figure
# out what size to use and should instead delegate that to the macroop's
# constructor. That would be more efficient, and it would make the
# microops a little more modular.
class cvtf_i2d(ConvOp):
code = '''
X86IntReg intReg = SSrcReg1;
if (REX_W)
FpDestReg = intReg.SR;
else
FpDestReg = intReg.SE;
'''
class cvtf_i2d_hi(ConvOp):
code = 'FpDestReg = bits(SSrcReg1, 63, 32);'
class cvtf_d2i(ConvOp):
code = '''
int64_t intSrcReg1 = static_cast<int64_t>(FpSrcReg1);
if (REX_W)
SDestReg = intSrcReg1;
else
SDestReg = merge(SDestReg, intSrcReg1, 4);
'''
# Convert two integers registers representing an 80-bit floating
# point number to an x87 register.
class cvtint_fp80(FpBinaryOp):
code = '''
uint8_t bits[10];
*(uint64_t *)(bits + 0) = SSrcReg1;
*(uint16_t *)(bits + 8) = (uint16_t)SSrcReg2;
FpDestReg = loadFloat80(bits);
'''
# Convert an x87 register (double) into extended precision and
# extract the highest 64 bits.
class cvtfp80h_int(ConvOp):
code = '''
char bits[10];
storeFloat80(bits, FpSrcReg1);
SDestReg = *(uint64_t *)(bits + 0);
'''
# Convert an x87 register (double) into extended precision and
# extract the lowest 16 bits.
class cvtfp80l_int(ConvOp):
code = '''
char bits[10];
storeFloat80(bits, FpSrcReg1);
SDestReg = *(uint16_t *)(bits + 8);
'''
# These need to consider size at some point. They'll always use doubles
# for the moment.
class addfp(FpBinaryOp):
code = 'FpDestReg = FpSrcReg1 + FpSrcReg2;'
class mulfp(FpBinaryOp):
code = 'FpDestReg = FpSrcReg1 * FpSrcReg2;'
op_class = 'FloatMultOp'
class divfp(FpBinaryOp):
code = 'FpDestReg = FpSrcReg1 / FpSrcReg2;'
op_class = 'FloatDivOp'
class subfp(FpBinaryOp):
code = 'FpDestReg = FpSrcReg1 - FpSrcReg2;'
class Yl2xFp(FpBinaryOp):
code = '''
FpDestReg = FpSrcReg2 * (log(FpSrcReg1) / log(2));
'''
op_class = 'FloatSqrtOp'
class PremFp(FpBinaryOp):
code = '''
MiscReg new_fsw(FSW);
int src1_exp;
int src2_exp;
std::frexp(FpSrcReg1, &src1_exp);
std::frexp(FpSrcReg2, &src2_exp);
const int d(src2_exp - src1_exp);
if (d < 64) {
const int64_t q(std::trunc(FpSrcReg2 / FpSrcReg1));
FpDestReg = FpSrcReg2 - FpSrcReg1 * q;
new_fsw &= ~(CC0Bit | CC1Bit | CC2Bit | CC2Bit);
new_fsw |= (q & 0x1) ? CC1Bit : 0;
new_fsw |= (q & 0x2) ? CC3Bit : 0;
new_fsw |= (q & 0x4) ? CC0Bit : 0;
} else {
const int n(42);
const int64_t qq(std::trunc(
FpSrcReg2 / std::ldexp(FpSrcReg1, d - n)));
FpDestReg = FpSrcReg2 - std::ldexp(FpSrcReg1 * qq, d - n);
new_fsw |= CC2Bit;
}
DPRINTF(X86, "src1: %lf, src2: %lf, dest: %lf, FSW: 0x%x\\n",
FpSrcReg1, FpSrcReg2, FpDestReg, new_fsw);
'''
op_class = 'FloatDivOp'
flag_code = 'FSW = new_fsw;'
class Compfp(FpBinaryOp):
def __init__(self, src1, src2, spm=0, setStatus=False, updateFTW=True, \
dataSize="env.dataSize"):
super(Compfp, self).__init__("InstRegIndex(FLOATREG_MICROFP0)", \
src1, src2, spm, setStatus, updateFTW, dataSize)
# This class sets the condition codes in rflags according to the
# rules for comparing floating point.
code = '''
// ZF PF CF
// Unordered 1 1 1
// Greater than 0 0 0
// Less than 0 0 1
// Equal 1 0 0
// OF = SF = AF = 0
ccFlagBits = ccFlagBits & ~(SFBit | AFBit | ZFBit | PFBit);
cfofBits = cfofBits & ~(OFBit | CFBit);
if (std::isnan(FpSrcReg1) || std::isnan(FpSrcReg2)) {
ccFlagBits = ccFlagBits | (ZFBit | PFBit);
cfofBits = cfofBits | CFBit;
}
else if(FpSrcReg1 < FpSrcReg2)
cfofBits = cfofBits | CFBit;
else if(FpSrcReg1 == FpSrcReg2)
ccFlagBits = ccFlagBits | ZFBit;
'''
op_class = 'FloatCmpOp'
class absfp(FpUnaryOp):
code = 'FpDestReg = fabs(FpSrcReg1);'
flag_code = 'FSW = FSW & (~CC1Bit);'
class chsfp(FpUnaryOp):
code = 'FpDestReg = (-1) * (FpSrcReg1);'
flag_code = 'FSW = FSW & (~CC1Bit);'
class Pop87(FpUnaryOp):
def __init__(self, spm=1, UpdateFTW=True):
super(Pop87, self).__init__( \
"InstRegIndex(FLOATREG_MICROFP0)", \
"InstRegIndex(FLOATREG_MICROFP0)", \
spm=spm, SetStatus=False, UpdateFTW=UpdateFTW)
code = ''
op_class = 'IntAluOp'
}};
|