summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/microops/regop.isa
blob: 608b86a70f27bf3c2c2f96c30b811da0ce9cb202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use.  Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
//     Director of Intellectual Property Licensing
//     Office of Strategy and Technology
//     Hewlett-Packard Company
//     1501 Page Mill Road
//     Palo Alto, California  94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.  Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution.  Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.  No right of
// sublicense is granted herewith.  Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses.  Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black

//////////////////////////////////////////////////////////////////////////
//
// RegOp Microop templates
//
//////////////////////////////////////////////////////////////////////////

def template MicroRegOpExecute {{
        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
                Trace::InstRecord *traceData) const
        {
            Fault fault = NoFault;

            DPRINTF(X86, "The data size is %d\n", dataSize);
            %(op_decl)s;
            %(op_rd)s;

            if(%(cond_check)s)
            {
                %(code)s;
                %(flag_code)s;
            }
            else
            {
                %(else_code)s;
            }

            //Write the resulting state to the execution context
            if(fault == NoFault)
            {
                %(op_wb)s;
            }
            return fault;
        }
}};

def template MicroRegOpImmExecute {{
        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
                Trace::InstRecord *traceData) const
        {
            Fault fault = NoFault;

            %(op_decl)s;
            %(op_rd)s;

            if(%(cond_check)s)
            {
                %(code)s;
                %(flag_code)s;
            }
            else
            {
                %(else_code)s;
            }

            //Write the resulting state to the execution context
            if(fault == NoFault)
            {
                %(op_wb)s;
            }
            return fault;
        }
}};

def template MicroRegOpDeclare {{
    class %(class_name)s : public %(base_class)s
    {
      protected:
        void buildMe();

      public:
        %(class_name)s(ExtMachInst _machInst,
                const char * instMnem,
                bool isMicro, bool isDelayed, bool isFirst, bool isLast,
                RegIndex _src1, RegIndex _src2, RegIndex _dest,
                uint8_t _dataSize, uint16_t _ext);

        %(class_name)s(ExtMachInst _machInst,
                const char * instMnem,
                RegIndex _src1, RegIndex _src2, RegIndex _dest,
                uint8_t _dataSize, uint16_t _ext);

        %(BasicExecDeclare)s
    };
}};

def template MicroRegOpImmDeclare {{

    class %(class_name)s : public %(base_class)s
    {
      protected:
        void buildMe();

      public:
        %(class_name)s(ExtMachInst _machInst,
                const char * instMnem,
                bool isMicro, bool isDelayed, bool isFirst, bool isLast,
                RegIndex _src1, uint16_t _imm8, RegIndex _dest,
                uint8_t _dataSize, uint16_t _ext);

        %(class_name)s(ExtMachInst _machInst,
                const char * instMnem,
                RegIndex _src1, uint16_t _imm8, RegIndex _dest,
                uint8_t _dataSize, uint16_t _ext);

        %(BasicExecDeclare)s
    };
}};

def template MicroRegOpConstructor {{

    inline void %(class_name)s::buildMe()
    {
        %(constructor)s;
    }

    inline %(class_name)s::%(class_name)s(
            ExtMachInst machInst, const char * instMnem,
            RegIndex _src1, RegIndex _src2, RegIndex _dest,
            uint8_t _dataSize, uint16_t _ext) :
        %(base_class)s(machInst, "%(mnemonic)s", instMnem,
                false, false, false, false,
                _src1, _src2, _dest, _dataSize, _ext,
                %(op_class)s)
    {
        buildMe();
    }

    inline %(class_name)s::%(class_name)s(
            ExtMachInst machInst, const char * instMnem,
            bool isMicro, bool isDelayed, bool isFirst, bool isLast,
            RegIndex _src1, RegIndex _src2, RegIndex _dest,
            uint8_t _dataSize, uint16_t _ext) :
        %(base_class)s(machInst, "%(mnemonic)s", instMnem,
                isMicro, isDelayed, isFirst, isLast,
                _src1, _src2, _dest, _dataSize, _ext,
                %(op_class)s)
    {
        buildMe();
    }
}};

def template MicroRegOpImmConstructor {{

    inline void %(class_name)s::buildMe()
    {
        %(constructor)s;
    }

    inline %(class_name)s::%(class_name)s(
            ExtMachInst machInst, const char * instMnem,
            RegIndex _src1, uint16_t _imm8, RegIndex _dest,
            uint8_t _dataSize, uint16_t _ext) :
        %(base_class)s(machInst, "%(mnemonic)s", instMnem,
                false, false, false, false,
                _src1, _imm8, _dest, _dataSize, _ext,
                %(op_class)s)
    {
        buildMe();
    }

    inline %(class_name)s::%(class_name)s(
            ExtMachInst machInst, const char * instMnem,
            bool isMicro, bool isDelayed, bool isFirst, bool isLast,
            RegIndex _src1, uint16_t _imm8, RegIndex _dest,
            uint8_t _dataSize, uint16_t _ext) :
        %(base_class)s(machInst, "%(mnemonic)s", instMnem,
                isMicro, isDelayed, isFirst, isLast,
                _src1, _imm8, _dest, _dataSize, _ext,
                %(op_class)s)
    {
        buildMe();
    }
}};

let {{
    class X86MicroMeta(type):
        def __new__(mcls, name, bases, dict):
            abstract = False
            if "abstract" in dict:
                abstract = dict['abstract']
                del dict['abstract']

            cls = type.__new__(mcls, name, bases, dict)
            if not abstract:
                allClasses[name] = cls
            return cls

    class XXX86Microop(object):
        __metaclass__ = X86MicroMeta
        abstract = True

    class RegOp(X86Microop):
        abstract = True
        def __init__(self, dest, src1, src2, flags, dataSize):
            self.dest = dest
            self.src1 = src1
            self.src2 = src2
            self.flags = flags
            self.dataSize = dataSize
            if flags is None:
                self.ext = 0
            else:
                if not isinstance(flags, (list, tuple)):
                    raise Exception, "flags must be a list or tuple of flags"
                self.ext = " | ".join(flags)
                self.className += "Flags"

        def getAllocator(self, *microFlags):
            allocator = '''new %(class_name)s(machInst, mnemonic
                    %(flags)s, %(src1)s, %(src2)s, %(dest)s,
                    %(dataSize)s, %(ext)s)''' % {
                "class_name" : self.className,
                "flags" : self.microFlagsText(microFlags),
                "src1" : self.src1, "src2" : self.src2,
                "dest" : self.dest,
                "dataSize" : self.dataSize,
                "ext" : self.ext}
            return allocator

    class RegOpImm(X86Microop):
        abstract = True
        def __init__(self, dest, src1, imm8, flags, dataSize):
            self.dest = dest
            self.src1 = src1
            self.imm8 = imm8
            self.flags = flags
            self.dataSize = dataSize
            if flags is None:
                self.ext = 0
            else:
                if not isinstance(flags, (list, tuple)):
                    raise Exception, "flags must be a list or tuple of flags"
                self.ext = " | ".join(flags)
                self.className += "Flags"

        def getAllocator(self, *microFlags):
            allocator = '''new %(class_name)s(machInst, mnemonic
                    %(flags)s, %(src1)s, %(imm8)s, %(dest)s,
                    %(dataSize)s, %(ext)s)''' % {
                "class_name" : self.className,
                "flags" : self.microFlagsText(microFlags),
                "src1" : self.src1, "imm8" : self.imm8,
                "dest" : self.dest,
                "dataSize" : self.dataSize,
                "ext" : self.ext}
            return allocator
}};

let {{

    # Make these empty strings so that concatenating onto
    # them will always work.
    header_output = ""
    decoder_output = ""
    exec_output = ""

    # A function which builds the C++ classes that implement the microops
    def setUpMicroRegOp(name, Name, base, code, flagCode = "", condCheck = "true", elseCode = ";", imm=False):
        global header_output
        global decoder_output
        global exec_output
        global microopClasses

        iop = InstObjParams(name, Name, base,
                {"code" : code,
                 "flag_code" : flagCode,
                 "cond_check" : condCheck,
                 "else_code" : elseCode})
        if imm:
            header_output += MicroRegOpImmDeclare.subst(iop)
            decoder_output += MicroRegOpImmConstructor.subst(iop)
            exec_output += MicroRegOpImmExecute.subst(iop)
        else:
            header_output += MicroRegOpDeclare.subst(iop)
            decoder_output += MicroRegOpConstructor.subst(iop)
            exec_output += MicroRegOpExecute.subst(iop)


    checkCCFlagBits = "checkCondition(ccFlagBits)"
    genCCFlagBits = \
        "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
    genCCFlagBitsSub = \
        "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
    genCCFlagBitsLogic = '''
        //Don't have genFlags handle the OF or CF bits
        uint64_t mask = CFBit | OFBit;
        ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
        //If a logic microop wants to set these, it wants to set them to 0.
        ccFlagBits &= ~(CFBit & ext);
        ccFlagBits &= ~(OFBit & ext);
    '''

    regPick = '''
        IntReg psrc1 = pick(SrcReg1, 0, dataSize);
        IntReg psrc2 = pick(SrcReg2, 1, dataSize);
    '''
    immPick = '''
        IntReg psrc1 = pick(SrcReg1, 0, dataSize);
    '''


    # This creates a python representations of a microop which are a cross
    # product of reg/immediate and flag/no flag versions.
    def defineMicroRegOp(mnemonic, code, flagCode=genCCFlagBits, \
            cc=False, elseCode=";"):
        Name = mnemonic
        name = mnemonic.lower()

        # Find op2 in each of the instruction definitions. Create two versions
        # of the code, one with an integer operand, and one with an immediate
        # operand.
        matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
        regCode = regPick + matcher.sub("psrc2", code)
        immCode = immPick + matcher.sub("imm8", code)

        if not cc:
            condCode = "true"
        else:
            flagCode = ""
            condCode = checkCCFlagBits

        regFlagCode = matcher.sub("psrc2", flagCode)
        immFlagCode = matcher.sub("imm8", flagCode)

        class RegOpChild(RegOp):
            mnemonic = name
            className = Name
            def __init__(self, dest, src1, src2, \
                    flags=None, dataSize="env.dataSize"):
                super(RegOpChild, self).__init__(dest, src1, src2, \
                        flags, dataSize)

        microopClasses[name] = RegOpChild

        setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode);
        setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp",
                regCode, flagCode=regFlagCode,
                condCheck=condCode, elseCode=elseCode);

        class RegOpChildImm(RegOpImm):
            mnemonic = name + 'i'
            className = Name + 'Imm'
            def __init__(self, dest, src1, src2, \
                    flags=None, dataSize="env.dataSize"):
                super(RegOpChildImm, self).__init__(dest, src1, src2, \
                        flags, dataSize)

        microopClasses[name + 'i'] = RegOpChildImm

        setUpMicroRegOp(name + "i", Name + "Imm", "X86ISA::RegOpImm", \
                immCode, imm=True);
        setUpMicroRegOp(name + "i", Name + "ImmFlags", "X86ISA::RegOpImm",
                immCode, flagCode=immFlagCode,
                condCheck=condCode, elseCode=elseCode, imm=True);

    # This has it's own function because Wr ops have implicit destinations
    def defineMicroRegOpWr(mnemonic, code, elseCode=";"):
        Name = mnemonic
        name = mnemonic.lower()

        # Find op2 in each of the instruction definitions. Create two versions
        # of the code, one with an integer operand, and one with an immediate
        # operand.
        matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
        regCode = regPick + matcher.sub("psrc2", code)
        immCode = immPick + matcher.sub("imm8", code)

        class RegOpChild(RegOp):
            mnemonic = name
            className = Name
            def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
                super(RegOpChild, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)

        microopClasses[name] = RegOpChild

        setUpMicroRegOp(name, Name, "X86ISA::RegOp", regCode);
        setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOp", regCode,
                condCheck = checkCCFlagBits, elseCode = elseCode);

        class RegOpChildImm(RegOpImm):
            mnemonic = name + 'i'
            className = Name + 'Imm'
            def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
                super(RegOpChildImm, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)

        microopClasses[name + 'i'] = RegOpChildImm

        setUpMicroRegOp(name + 'i', Name + "Imm", "X86ISA::RegOpImm", \
                immCode, imm=True);
        setUpMicroRegOp(name + 'i', Name + "ImmFlags", "X86ISA::RegOpImm", \
                immCode, condCheck = checkCCFlagBits, elseCode = elseCode, \
                imm=True);

    # This has it's own function because Rd ops don't always have two parameters
    def defineMicroRegOpRd(mnemonic, code):
        Name = mnemonic
        name = mnemonic.lower()

        class RegOpChild(RegOp):
            className = Name
            mnemonic = name
            def __init__(self, dest, src1 = "NUM_INTREGS", dataSize="env.dataSize"):
                super(RegOpChild, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize)

        microopClasses[name] = RegOpChild

        setUpMicroRegOp(name, Name, "X86ISA::RegOp", code);

    def defineMicroRegOpImm(mnemonic, code, flagCode=""):
        Name = mnemonic
        name = mnemonic.lower()
        code = immPick + code

        class RegOpChild(RegOpImm):
            className = Name
            mnemonic = name
            def __init__(self, dest, src1, src2, \
                    flags=None, dataSize="env.dataSize"):
                super(RegOpChild, self).__init__(dest, \
                        src1, src2, flags, dataSize)

        microopClasses[name] = RegOpChild

        setUpMicroRegOp(name, Name, "X86ISA::RegOpImm", code, imm=True);
        setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOpImm", \
                code, flagCode=flagCode, imm=True);

    def defineMicroRegOpRdImm(mnemonic, code, flagCode=""):
        Name = mnemonic
        name = mnemonic.lower()
        code = immPick + code

        class RegOpChildRdImm(RegOpImm):
            className = Name
            mnemonic = name
            def __init__(self, dest, imm, flags=None, \
                    dataSize="env.dataSize"):
                super(RegOpChildRdImm, self).__init__(dest, \
                        "NUM_INTREGS", imm, flags, dataSize)

        microopClasses[name] = RegOpChildRdImm

        setUpMicroRegOp(name, Name, "X86ISA::RegOpImm", code, imm=True);
        setUpMicroRegOp(name, Name + "Flags", "X86ISA::RegOpImm", \
                code, flagCode=flagCode, imm=True);

    defineMicroRegOp('Add', 'DestReg = merge(DestReg, psrc1 + op2, dataSize)')
    defineMicroRegOp('Or', 'DestReg = merge(DestReg, psrc1 | op2, dataSize);',
            flagCode = genCCFlagBitsLogic)
    defineMicroRegOp('Adc', '''
            CCFlagBits flags = ccFlagBits;
            DestReg = merge(DestReg, psrc1 + op2 + flags.CF, dataSize);
            ''')
    defineMicroRegOp('Sbb', '''
            CCFlagBits flags = ccFlagBits;
            DestReg = merge(DestReg, psrc1 - op2 - flags.CF, dataSize);
            ''', flagCode = genCCFlagBitsSub)
    defineMicroRegOp('And', \
            'DestReg = merge(DestReg, psrc1 & op2, dataSize)', \
            flagCode = genCCFlagBitsLogic)
    defineMicroRegOp('Sub', \
            'DestReg = merge(DestReg, psrc1 - op2, dataSize)', \
            flagCode = genCCFlagBitsSub)
    defineMicroRegOp('Xor', \
            'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)', \
            flagCode = genCCFlagBitsLogic)
    defineMicroRegOp('Mul1s', '''
            int signPos = (dataSize * 8) / 2 - 1;
            IntReg srcVal1 = psrc1 | (-bits(psrc1, signPos) << signPos);
            IntReg srcVal2 = op2 | (-bits(psrc1, signPos) << signPos);
            DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize)
            ''')
    defineMicroRegOp('Mul1u', '''
            int halfSize = (dataSize * 8) / 2;
            IntReg srcVal1 = psrc1 & mask(halfSize);
            IntReg srcVal2 = op2 & mask(halfSize);
            DestReg = merge(DestReg, srcVal1 * srcVal2, dataSize)
            ''')
    defineMicroRegOp('Mulel', \
            'DestReg = merge(DestReg, psrc1 * op2, dataSize)')
    defineMicroRegOp('Muleh', '''
            int halfSize = (dataSize * 8) / 2;
            uint64_t psrc1_h = psrc1 >> halfSize;
            uint64_t psrc1_l = psrc1 & mask(halfSize);
            uint64_t psrc2_h = op2 >> halfSize;
            uint64_t psrc2_l = op2 & mask(halfSize);
            uint64_t result =
                ((psrc1_l * psrc2_h) >> halfSize) +
                ((psrc1_h * psrc2_l) >> halfSize) +
                psrc1_h * psrc2_h;
            DestReg = merge(DestReg, result, dataSize);
            ''')
    defineMicroRegOp('Div1', '''
            int halfSize = (dataSize * 8) / 2;
            IntReg quotient = (psrc1 / op2) & mask(halfSize);
            IntReg remainder = (psrc1 % op2) & mask(halfSize);
            IntReg result = quotient | (remainder << halfSize);
            DestReg = merge(DestReg, result, dataSize);
            ''')
    defineMicroRegOp('Divq', '''
            DestReg = merge(DestReg, psrc1 / op2, dataSize);
            ''')
    defineMicroRegOp('Divr', '''
            DestReg = merge(DestReg, psrc1 % op2, dataSize);
            ''')

    #
    # HACK HACK HACK HACK - Put psrc1 in here but make it inert to shut up gcc.
    #
    defineMicroRegOp('Mov', 'DestReg = merge(SrcReg1, psrc1 * 0 + op2, dataSize)',
            elseCode='DestReg=DestReg;', cc=True)

    # Shift instructions
    defineMicroRegOp('Sll', '''
            uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
            ''')
    defineMicroRegOp('Srl', '''
            uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            // Because what happens to the bits shift -in- on a right shift
            // is not defined in the C/C++ standard, we have to mask them out
            // to be sure they're zero.
            uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
            DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
            ''')
    defineMicroRegOp('Sra', '''
            uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            // Because what happens to the bits shift -in- on a right shift
            // is not defined in the C/C++ standard, we have to sign extend
            // them manually to be sure.
            uint64_t arithMask =
                -bits(op2, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
            DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
            ''')
    defineMicroRegOp('Ror', '''
            uint8_t shiftAmt =
                (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            if(shiftAmt)
            {
                uint64_t top = psrc1 << (dataSize * 8 - shiftAmt);
                uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
                DestReg = merge(DestReg, top | bottom, dataSize);
            }
            else
                DestReg = DestReg;
            ''')
    defineMicroRegOp('Rcr', '''
            uint8_t shiftAmt =
                (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            if(shiftAmt)
            {
                CCFlagBits flags = ccFlagBits;
                uint64_t top = flags.CF << (dataSize * 8 - shiftAmt);
                if(shiftAmt > 1)
                    top |= psrc1 << (dataSize * 8 - shiftAmt - 1);
                uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
                DestReg = merge(DestReg, top | bottom, dataSize);
            }
            else
                DestReg = DestReg;
            ''')
    defineMicroRegOp('Rol', '''
            uint8_t shiftAmt =
                (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            if(shiftAmt)
            {
                uint64_t top = psrc1 << shiftAmt;
                uint64_t bottom =
                    bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt);
                DestReg = merge(DestReg, top | bottom, dataSize);
            }
            else
                DestReg = DestReg;
            ''')
    defineMicroRegOp('Rcl', '''
            uint8_t shiftAmt =
                (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
            if(shiftAmt)
            {
                CCFlagBits flags = ccFlagBits;
                uint64_t top = psrc1 << shiftAmt;
                uint64_t bottom = flags.CF << (shiftAmt - 1);
                if(shiftAmt > 1)
                    bottom |=
                        bits(psrc1, dataSize * 8 - 1,
                                   dataSize * 8 - shiftAmt + 1);
                DestReg = merge(DestReg, top | bottom, dataSize);
            }
            else
                DestReg = DestReg;
            ''')

    defineMicroRegOpWr('Wrip', 'RIP = psrc1 + op2', elseCode="RIP = RIP;")
    defineMicroRegOpWr('Br', 'nuIP = psrc1 + op2;', elseCode='nuIP = nuIP;')
    defineMicroRegOpWr('Wruflags', 'ccFlagBits = psrc1 ^ op2')

    defineMicroRegOpRd('Rdip', 'DestReg = RIP')
    defineMicroRegOpRd('Ruflags', 'DestReg = ccFlagBits')
    defineMicroRegOpRdImm('Ruflag', '''
            int flag = bits(ccFlagBits, (1 << imm8) + 0*psrc1);
            DestReg = merge(DestReg, flag, dataSize);
            ccFlagBits = ccFlagBits & ~EZFBit;
            ccFlagBits = ccFlagBits | ((flag == 0) ? EZFBit : 0);
            ''')

    defineMicroRegOpImm('Sext', '''
            IntReg val = psrc1;
            int sign_bit = bits(val, imm8-1, imm8-1);
            val = sign_bit ? (val | ~mask(imm8)) : val;
            DestReg = merge(DestReg, val, dataSize);''')

    defineMicroRegOpImm('Zext', 'DestReg = bits(psrc1, imm8-1, 0);')
}};