1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2007 The Regents of The University of Michigan
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
def operand_types {{
'sb' : 'int8_t',
'ub' : 'uint8_t',
'sw' : 'int16_t',
'uw' : 'uint16_t',
'sdw' : 'int32_t',
'udw' : 'uint32_t',
'sqw' : 'int64_t',
'uqw' : 'uint64_t',
'sf' : 'float',
'df' : 'double',
}};
let {{
def foldInt(idx, foldBit, id):
return ('IntReg', 'uqw', 'INTREG_FOLDED(%s, %s)' % (idx, foldBit),
'IsInteger', id)
def intReg(idx, id):
return ('IntReg', 'uqw', idx, 'IsInteger', id)
def impIntReg(idx, id):
return ('IntReg', 'uqw', 'INTREG_IMPLICIT(%s)' % idx, 'IsInteger', id)
def floatReg(idx, id):
return ('FloatReg', 'df', idx, 'IsFloating', id)
def controlReg(idx, id, ctype = 'uqw'):
return ('ControlReg', ctype, idx,
(None, None, ['IsSerializeAfter',
'IsSerializing',
'IsNonSpeculative']),
id)
def squashCheckReg(idx, id, check, ctype = 'uqw'):
return ('ControlReg', ctype, idx,
(None, None, ['((%s) ? ' % check+ \
'IsSquashAfter : IsSerializeAfter)',
'IsSerializing',
'IsNonSpeculative']),
id)
def squashCReg(idx, id, ctype = 'uqw'):
return squashCheckReg(idx, id, 'true', ctype)
def squashCSReg(idx, id, ctype = 'uqw'):
return squashCheckReg(idx, id, 'dest == SEGMENT_REG_CS', ctype)
def squashCR0Reg(idx, id, ctype = 'uqw'):
return squashCheckReg(idx, id, 'dest == 0', ctype)
}};
def operands {{
'SrcReg1': foldInt('src1', 'foldOBit', 1),
'SSrcReg1': intReg('src1', 1),
'SrcReg2': foldInt('src2', 'foldOBit', 2),
'SSrcReg2': intReg('src2', 1),
'Index': foldInt('index', 'foldABit', 3),
'Base': foldInt('base', 'foldABit', 4),
'DestReg': foldInt('dest', 'foldOBit', 5),
'SDestReg': intReg('dest', 5),
'Data': foldInt('data', 'foldOBit', 6),
'ProdLow': impIntReg(0, 7),
'ProdHi': impIntReg(1, 8),
'Quotient': impIntReg(2, 9),
'Remainder': impIntReg(3, 10),
'Divisor': impIntReg(4, 11),
'DoubleBits': impIntReg(5, 11),
'Rax': intReg('(INTREG_RAX)', 12),
'Rbx': intReg('(INTREG_RBX)', 13),
'Rcx': intReg('(INTREG_RCX)', 14),
'Rdx': intReg('(INTREG_RDX)', 15),
'Rsp': intReg('(INTREG_RSP)', 16),
'Rbp': intReg('(INTREG_RBP)', 17),
'Rsi': intReg('(INTREG_RSI)', 18),
'Rdi': intReg('(INTREG_RDI)', 19),
'FpSrcReg1': floatReg('src1', 20),
'FpSrcReg2': floatReg('src2', 21),
'FpDestReg': floatReg('dest', 22),
'FpData': floatReg('data', 23),
'RIP': ('PCState', 'uqw', 'pc',
(None, None, 'IsControl'), 50),
'NRIP': ('PCState', 'uqw', 'npc',
(None, None, 'IsControl'), 50),
'nuIP': ('PCState', 'uqw', 'nupc',
(None, None, 'IsControl'), 50),
# These registers hold the condition code portion of the flag
# register. The nccFlagBits version holds the rest.
'ccFlagBits': intReg('INTREG_PSEUDO(0)', 60),
'cfofBits': intReg('INTREG_PSEUDO(1)', 61),
'dfBit': intReg('INTREG_PSEUDO(2)', 62),
'ecfBit': intReg('INTREG_PSEUDO(3)', 63),
'ezfBit': intReg('INTREG_PSEUDO(4)', 64),
# These Pred registers are to be used where reading the portions of
# condition code registers is possibly optional, depending on how the
# check evaluates. There are two checks being specified, one tests if
# a register needs to be read, the other tests whether the register
# needs to be written to. It is unlikely that these would need to be
# used in the actual operation of the instruction. It is expected
# that these are used only in the flag code.
# Rationale behind the checks: at times, we need to partially update
# the condition code bits in a register. So we read the register even
# in the case when the all the bits will be written, or none of the
# bits will be written. The read predicate checks if any of the bits
# would be retained, the write predicate checks if any of the bits
# are being written.
'PredccFlagBits': ('IntReg', 'uqw', 'INTREG_PSEUDO(0)', 'IsInteger',
60, None, None, '''(((ext & (PFBit | AFBit | ZFBit | SFBit
)) != (PFBit | AFBit | ZFBit | SFBit )) &&
((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0))''',
'((ext & (PFBit | AFBit | ZFBit | SFBit )) != 0)'),
'PredcfofBits': ('IntReg', 'uqw', 'INTREG_PSEUDO(1)', 'IsInteger',
61, None, None, '''(((ext & CFBit) == 0 ||
(ext & OFBit) == 0) && ((ext & (CFBit | OFBit)) != 0))''',
'((ext & (CFBit | OFBit)) != 0)'),
'PreddfBit': ('IntReg', 'uqw', 'INTREG_PSEUDO(2)', 'IsInteger',
62, None, None, '(false)', '((ext & DFBit) != 0)'),
'PredecfBit': ('IntReg', 'uqw', 'INTREG_PSEUDO(3)', 'IsInteger',
63, None, None, '(false)', '((ext & ECFBit) != 0)'),
'PredezfBit': ('IntReg', 'uqw', 'INTREG_PSEUDO(4)', 'IsInteger',
64, None, None, '(false)', '((ext & EZFBit) != 0)'),
# These register should needs to be more protected so that later
# instructions don't map their indexes with an old value.
'nccFlagBits': controlReg('MISCREG_RFLAGS', 65),
'TOP': controlReg('MISCREG_X87_TOP', 66, ctype='ub'),
# The segment base as used by memory instructions.
'SegBase': controlReg('MISCREG_SEG_EFF_BASE(segment)', 70),
# Operands to get and set registers indexed by the operands of the
# original instruction.
'ControlDest': squashCR0Reg('MISCREG_CR(dest)', 100),
'ControlSrc1': controlReg('MISCREG_CR(src1)', 101),
'DebugDest': controlReg('MISCREG_DR(dest)', 102),
'DebugSrc1': controlReg('MISCREG_DR(src1)', 103),
'SegBaseDest': squashCSReg('MISCREG_SEG_BASE(dest)', 104),
'SegBaseSrc1': controlReg('MISCREG_SEG_BASE(src1)', 105),
'SegLimitDest': squashCSReg('MISCREG_SEG_LIMIT(dest)', 106),
'SegLimitSrc1': controlReg('MISCREG_SEG_LIMIT(src1)', 107),
'SegSelDest': controlReg('MISCREG_SEG_SEL(dest)', 108),
'SegSelSrc1': controlReg('MISCREG_SEG_SEL(src1)', 109),
'SegAttrDest': squashCSReg('MISCREG_SEG_ATTR(dest)', 110),
'SegAttrSrc1': controlReg('MISCREG_SEG_ATTR(src1)', 111),
# Operands to access specific control registers directly.
'EferOp': squashCReg('MISCREG_EFER', 200),
'CR4Op': controlReg('MISCREG_CR4', 201),
'DR7Op': controlReg('MISCREG_DR7', 202),
'LDTRBase': controlReg('MISCREG_TSL_BASE', 203),
'LDTRLimit': controlReg('MISCREG_TSL_LIMIT', 204),
'LDTRSel': controlReg('MISCREG_TSL', 205),
'GDTRBase': controlReg('MISCREG_TSG_BASE', 206),
'GDTRLimit': controlReg('MISCREG_TSG_LIMIT', 207),
'CSBase': squashCReg('MISCREG_CS_EFF_BASE', 208),
'CSAttr': squashCReg('MISCREG_CS_ATTR', 209),
'MiscRegDest': controlReg('dest', 210),
'MiscRegSrc1': controlReg('src1', 211),
'TscOp': controlReg('MISCREG_TSC', 212),
'M5Reg': squashCReg('MISCREG_M5_REG', 213),
'Mem': ('Mem', 'uqw', None, \
('IsMemRef', 'IsLoad', 'IsStore'), 300)
}};
|