1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
////////////////////////////////////////////////////////////////////
//
// Code to "specialize" a microcode sequence to use a particular
// variety of operands
//
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# Each element of the dict is a list containing a function and then the
# arguments to pass to it.
def doSplitDecode(switchVal, vals, default = None):
blocks = OutputBlocks()
blocks.decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
new_blocks = todo[0](*todo[1:])
new_blocks.decode_block = \
'\tcase %s: %s\n' % (val, new_blocks.decode_block)
blocks.append(new_blocks)
if default:
new_blocks = default[0](*default[1:])
new_blocks.decode_block = \
'\tdefault: %s\n' % new_blocks.decode_block
blocks.append(new_blocks)
blocks.decode_block += '}\n'
return blocks
}};
let {{
def doRipRelativeDecode(Name, opTypes, env):
# print "RIPing %s with opTypes %s" % (Name, opTypes)
env.memoryInst = True
normEnv = copy.copy(env)
normEnv.addToDisassembly(
'''printMem(out, env.seg, env.scale, env.index, env.base,
machInst.displacement, env.addressSize, false);''')
normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), normEnv)
ripEnv = copy.copy(env)
ripEnv.addToDisassembly(
'''printMem(out, env.seg, 1, 0, 0,
machInst.displacement, env.addressSize, true);''')
ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), ripEnv)
blocks = OutputBlocks()
blocks.append(normBlocks)
blocks.append(ripBlocks)
blocks.decode_block = '''
if(machInst.modRM.mod == 0 &&
machInst.modRM.rm == 5 &&
machInst.mode.submode == SixtyFourBitMode)
{ %s }
else
{ %s }''' % \
(ripBlocks.decode_block, normBlocks.decode_block)
return blocks
}};
let {{
def doBadInstDecode():
blocks = OutputBlocks()
blocks.decode_block = '''
return new Unknown(machInst);
'''
return blocks
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
raise Exception, "Problem parsing operand type %s" % opTypeString
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
if not self.size:
self.size = match.group("rsize")
ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))"
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes".
def specializeInst(Name, opTypes, env):
# print "Specializing %s with opTypes %s" % (Name, opTypes)
while len(opTypes):
# Parse the operand type string we're working with
opType = OpType(opTypes[0])
opTypes.pop(0)
if opType.tag not in ("I", "J", "P", "PR", "Q", "V", "VR", "W"):
if opType.size:
env.setSize(opType.size)
if opType.reg:
#Figure out what to do with fixed register operands
#This is the index to use, so we should stick it some place.
if opType.reg in ("A", "B", "C", "D"):
regString = "INTREG_R%sX" % opType.reg
else:
regString = "INTREG_R%s" % opType.reg
env.addReg(regString)
env.addToDisassembly(
"printReg(out, InstRegIndex(%s), regSize);\n" %
regString)
Name += "_R"
elif opType.tag == "B":
# This refers to registers whose index is encoded as part of the opcode
env.addToDisassembly(
"printReg(out, InstRegIndex(%s), regSize);\n" %
InstRegIndex)
Name += "_R"
env.addReg(InstRegIndex)
elif opType.tag == "M":
# This refers to memory. The macroop constructor sets up modrm
# addressing. Non memory modrm settings should cause an error.
env.doModRM = True
return doSplitDecode("MODRM_MOD",
{"3" : (doBadInstDecode,) },
(doRipRelativeDecode, Name, opTypes, env))
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag == "C":
# A control register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"ccprintf(out, \"CR%%d\", %s);\n" % ModRMRegIndex)
Name += "_C"
elif opType.tag == "D":
# A debug register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"ccprintf(out, \"DR%%d\", %s);\n" % ModRMRegIndex)
Name += "_D"
elif opType.tag == "S":
# A segment selector register indexed by the "reg" field
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"printSegment(out, %s);\n" % ModRMRegIndex)
Name += "_S"
elif opType.tag in ("G", "P", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
env.addReg(ModRMRegIndex)
env.addToDisassembly(
"printReg(out, InstRegIndex(%s), regSize);\n" %
ModRMRegIndex)
if opType.tag == "P":
Name += "_MMX"
elif opType.tag == "V":
Name += "_XMM"
else:
Name += "_R"
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regEnv = copy.copy(env)
regEnv.addReg(ModRMRMIndex)
regEnv.addToDisassembly(
"printReg(out, InstRegIndex(%s), regSize);\n" %
ModRMRMIndex)
# This refers to memory. The macroop constructor should set up
# modrm addressing.
memEnv = copy.copy(env)
memEnv.doModRM = True
regSuffix = "_R"
if opType.tag == "Q":
regSuffix = "_MMX"
elif opType.tag == "W":
regSuffix = "_XMM"
return doSplitDecode("MODRM_MOD",
{"3" : (specializeInst, Name + regSuffix,
copy.copy(opTypes), regEnv)},
(doRipRelativeDecode, Name,
copy.copy(opTypes), memEnv))
elif opType.tag in ("I", "J"):
# Immediates
env.addToDisassembly(
"ccprintf(out, \"%#x\", machInst.immediate);\n")
Name += "_I"
elif opType.tag == "O":
# Immediate containing a memory offset
Name += "_MI"
elif opType.tag in ("PR", "R", "VR"):
# Non register modrm settings should cause an error
env.addReg(ModRMRMIndex)
env.addToDisassembly(
"printReg(out, InstRegIndex(%s), regSize);\n" %
ModRMRMIndex)
if opType.tag == "PR":
Name += "_MMX"
elif opType.tag == "VR":
Name += "_XMM"
else:
Name += "_R"
elif opType.tag in ("X", "Y"):
# This type of memory addressing is for string instructions.
# They'll use the right index and segment internally.
if opType.tag == "X":
env.addToDisassembly(
'''printMem(out, env.seg,
1, X86ISA::ZeroReg, X86ISA::INTREG_RSI, 0,
env.addressSize, false);''')
else:
env.addToDisassembly(
'''printMem(out, SEGMENT_REG_ES,
1, X86ISA::ZeroReg, X86ISA::INTREG_RDI, 0,
env.addressSize, false);''')
Name += "_M"
else:
raise Exception, "Unrecognized tag %s." % opType.tag
# Generate code to return a macroop of the given name which will
# operate in the "emulation environment" env
return genMacroop(Name, env)
}};
|